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ABSTRACT 

Reduced-activated ferritic-martensitic steels are being considered for use in fusion energy reactor and subsequent fusion 
power reactor applications. Typically, those reduced activated steels can loose their radioactivity in approximately 100 
years, compared to thousands of years for the non-reduced-activated steels. The commonly used welding process for 
fabricating this steel are electron-beam welding, and tungsten inert gas (TIG) welding. Therefore, Activated-flux tung-
sten inert gas (A-TIG) welding, a variant of TIG welding has been developed in-house to increase the depth of penetra-
tion in single pass welding. In structural materials produced by A-TIG welding process, weld bead width, depth of 
penetration and heat affected zone (HAZ) width play an important role in determining in mechanical properties and also 
the performance of the weld joints during service. To obtain the desired weld bead geometry, HAZ width and make a 
good weld joint, it becomes important to set up the welding process parameters. The current work attempts to develop 
independent models correlating the welding process parameters like current, voltage and torch speed with weld bead 
shape will bead shape parameters like depth of penetration, bead width, HAZ width using ANFIS. These models will be 
used to evaluate the objective function in the genetic algorithm. Then genetic algorithm is employed to determine the 
optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width. 
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1. Introduction 

Reduced-activation steels were developed to enhance 
safety and reduce adverse environmental effects of future 
fusion power plants. Ferritic and Martensitic steels were 
developed during the 1985-1990 timeframe, and the fea- 
sibility of their use for fusion was investigated in an in- 
ternational collaboration from 1994 to present. Work 
continues to improve the steels and understand the effect 
of neutron irradiation on them [1]. Low activation mate- 
rials were defined as materials that during irradiation 
would either not activate or any induced radioactivity 
caused by transmutation of elements in the material by 
interaction with high-energy neutrons from the deute- 
rium-tritium fusion reaction would decay rapidly to allow 
safe operation and hands-on reactor maintenance [2]. 
True low-activation structural materials were not feasible, 
and “reduced-activation” steels were proposed that would 
not contain elements that would result in longlived, trans-  

mutation produced, radioactive elements. This would 
allow for safer and more economical disposal of radioac- 
tive reactor components after service exposure. Radioac- 
tivity from reduced-activation steels should decay to low 
levels in approximately 100 years, compared to thou- 
sands of years for some non-reduced-activation steels. 

The tungsten inert gas (TIG) welding process was de- 
veloped in 1938 and its usage is widespread in modern 
industry, such as aerospace, nuclear, petroleum and che- 
mical industries, for its quality. It seems to be well 
adapted to weld this kind of materials, needing a great 
precision. Unfortunately, the principle disadvantages of 
TIG welding process ascribe to its limited penetration 
ability in a single pass, poor tolerance to some material 
composition and the low production [3,4]. Activated flux 
TIG welding (A-TIG) process first developed by the E. O. 
Paton Electric welding Institute in the 1960s, at Kiev 
(Ukraine) [5]. In A-TIG welding process, a very thin 
coating of activatedflux is applied to the surface of the  *Corresponding author. 

Copyright © 2013 SciRes.                                                                                JILSA 



Hybrid Intelligent Modeling for Optimizing Welding Process Parameters for Reduced Activation 
Ferritic-Martensitic (RAFM) Steel 

40 

material before welding. Thanks to this flux, there is a 
great increase of the penetration depth (up to 300%), un- 
der the same welding conditions [6-8]. The A-TIG weld- 
ing can greatly increase welding productivity and reduce 
the welding cost as well as welding distortion simulta- 
neously huge amount of cost saving and its sensibility to 
the chemical composition of the base metal reduced [9, 
10]. 

The weld bead shape parameters such as depth of 
penetration (DOP), weld bead width (BW) and heat af- 
fected zone (HAZ) width in RAFM steels produced by 
A-TIG welding plays an important role in determining 
the weld quality and the mechanical properties such as 
creep, low cycle fatigue and the toughness. The weld 
bead shape parameters and the HAZ width are decided 
according to the current, voltage and torch speed. Ex- 
perimental optimization of the process parameters re- 
quired to achieve the desired depth of penetration and 
HAZ width in the above structural materials may require 
many experiments and is indeed time consuming. There- 
fore, it is necessary to develop a computational model for 
determining the optimum A-TIG welding process pa- 
rameters to achieve the target depth of penetration and 
HAZ width. 

Soft computing is a natural option for solving nonlin- 
ear and complex problems in welding [11,12]. Funda- 
mental areas of soft computing are artificial neural net- 
works (ANNs), fuzzy logic and genetic algorithms (GA) 
etc. The application of these techniques offers new op- 
portunities in solving complex problems. Artificial neural 
networks are parallel-distributed processing systems com- 
prising nonlinear process elements that perform in a si- 
milar manner to biological neurons. Artificial Neural Net- 
works posses the ability to learn from experience and 
generalize new data from previous data sets. They are 
particularly useful for problems in which a lack of com- 
plete understanding exists of relationships among the 
variables. Fuzzy logic predicts the complex characteris- 
tics of the problems based on the concept of relative im- 
portance of precision of solutions. Fuzzy logic offers a 
powerful frame of reasoning as how human reasoning 
works. These systems employ a rule-based approach and 
interpolative reasoning as well as perform nonlinear 
mapping of inputs. In fuzzy logic, expert’s knowledge 
also can be added to bring out the results accurately. Ge- 
netic algorithms are nondeterministic stochastic optimi- 
zation methods to use theories of evolution and natural 
selection to solve a problem within a complex solution 
space [13]. GAs possesses a population of solutions that 
evolve according to the rules of selection and other op- 
erators such as recombination and mutation. GA repre- 
sents an efficient global method of optimizing nonlinear 
problems. 

Nowadays, Hybrid techniques such as a combination 

of ANN and GA or Fuzzy Logic and GA are emerging as 
innovating solutions to non-linear problems [14]. These 
systems bring out the advantages of both techniques. 
Datta et al. [15] have worked on a similar hybrid system 
consisting of ANN and Multi-Objective GA for design- 
ing high strength multi-phase steels. S. Dey et al. [16] 
have modeled the mechanical properties of TRIP assisted 
steels using Fuzzy Inference System. 

Adaptive Neuro Fuzzy Inference System (ANFIS), a 
modified Fuzzy Inference System (FIS) works similar to 
that of Neural Networks. With the help of ANFIS, tuning 
of membership function parameters can be done by either 
using a back propagation algorithm or in combination 
with the least square type of method. This allows the FIS 
to learn from the data that are to be modeled. Several 
attempts were made to model complex problems using 
this advanced tool. Hancheng et al. [17] modeled mate- 
rial properties using fuzzy neural networks. Chen and 
Linkens [18] have predicted impact toughness for alloy 
steels. Hybrid computing techniques are hence used for 
modeling non-linear and complex problems involving 
welding process parameters and welding bead shape pa- 
rameters. Edwin and Kumanan [19] have predicted weld 
bead width in Submerged Arc Welding using ANFIS. 
Kovacevic and Zhang [20] have experimentally modeled 
weld pool geometry using Neurofuzzy. Vasudevan et al. 
[21-23] have used hybrid techniques along with GA to 
optimize process parameters for GTAW of austenitic 
Stainless steels. De and Bag [24] have coupled GA with 
heat transfer model to predict process variables in GTA 
spot welding. Since it is very appropriate to apply GA to 
nonlinear welding problems, Genetic Algorithms are 
being increasingly applied in the field of welding in re- 
cent times. 

Combining ANFIS with GA or ANN with GA are 
emerging methodologies for solving the non-linear prob- 
lems such as optimization of welding processes. The 
reason for choosing them over regression models is that 
these tools are very efficient in learning and become very 
accurate predictive tools after training. Accurate models 
using ANFIS or ANN can be developed for predicting 
weld bead shape parameters as a function of welding pro- 
cess variables. These models then find application during 
the evaluation of objective function in genetic algorithm. 

In the present work, welding process parameters like 
current, voltage and torch speed are correlated, using 
ANFIS, which incorporates effective learning from given 
data, to weld bead shape parameters like depth of pene- 
tration, bead width and HAZ width. Then these ANFIS 
models are employed in GA to evaluate the objective 
function and to arrive at the optimal solutions for obtain- 
ing target Weld bead geometry and HAZ width during  
A-TIG welding of Reduced-Activated Ferritic-Marten- 
sitic steels. 
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2. Data Generation 

Bead-on welding was carried out on Reduced-Activated 
Ferritic-Martensitic steel plates of 6mm thickness. Se- 
veral experiments were conducted to generate 56 data 
sets by altering the process parameters. Current was ad- 
justed between a minimum value of 75 amps and a 
maximum value of 250 amps in steps of 25 amps (say 75, 
100, 125 - 250). Torch speed was set in the range of 1.33 
mm/s - 3.33 mm/s and arc voltage in the range of 10.1v 
to 16.9v. A thoriated tungsten electrode of 3 mm diame- 
ter was used in which the tip is inclined at 45˚ to the ver- 
tical plane. Arc gap was fixed as 1mm. Argon at a flow 
rate of 10 Liter/minute was used for shielding. Multi 
component specific activated flux was utilized to reduce 
the production time. The samples cut from the bead-on 
plate welds were polished and etched to see the cross 
section for making measurements on depth of penetration, 
weld bead width and HAZ width. Machinist’s micro- 
scope was used for making the measurements. Figure 1 
describes the various weld bead shape parameters and 
HAZ width in a typical weld joint. 

3. Methodology 

The methodology applied for optimizing weld bead ge- 
ometry using GA based models involves two important 
steps. Initially, three different models were created using 
ANFIS correlating welding process parameters like cur- 
rent, torch speed and arc voltage with depth of penetra- 
tion, bead width and HAZ width respectively. The flow 
chart giving the steps involved in the methodology is 
shown in Figure 2. Then these models were incorporated 
in GA to evaluate the objective function and hence the 
GA code was developed to optimize the welding process 
parameters to achieve target weld bead geometry and 
HAZ width. 

4. Results and Discussions 

4.1. Development of Adaptive Neuro Fuzzy 
Inference System Models 

Adaptive Neuro Fuzzy Inference System embeds the 
 

CA

BDE

 

Figure 1. Schematic figure depicting weld bead shape pa- 
rameters. A: Bead width; B: Depth of penetration; C: HAZ 
width; D: Weld metal; E: Base metal. 

Data Generation by ATIG welding 
on Reduced-Activated steel

GA code development to optimize 
the welding process parameters

Development of ANFIS models to 
correlate process parameters to weld 

bead geometry and HAZ width

Experimental Validation of GA 
model Predictions  

Figure 2. Flowchart representing methodology involved. 
 
Fuzzy Inference System into the framework of the adap- 
tive networks. It serves as a basis for constructing a set of 
fuzzy if-then rules with appropriate membership func- 
tions to attain the stipulated input-output data pairs. It 
models or remodels the entire fuzzy inference system 
whose membership function parameters are tuned by 
using either back propagation algorithm or in combina- 
tion with the least square method. It learns and hence 
trains the fuzzy inference system based on the given in- 
put data sets. This fuzzy system has mainly three com- 
ponents: 1) A rule base that has a collection of rules; 2) 
A database with the help of which the membership func- 
tions can be decided and its parameters are to be tuned 
and; 3) A decision making mechanism which carries out 
inference procedure to map the inputs and the rules [19]. 
The schematic network like structure that is used in AN- 
FIS is shown in Figure 3 indicating the essential input 
and the output parameters. 

In this current work, out of the 56 data sets, 47 were 
used for training, 9 for checking and 9 for testing the FIS. 
Three independent ANFIS models were developed sepa- 
rately for predicting the weld bead width, depth of pene- 
tration and HAZ width. The Sugeno model represents the 
FIS compactly with high computational efficiency. It 
works well in non-linear problems and with optimization 
and adaptive techniques. The triangular function, that 
maps this non-linear problem with high efficiency, is 
utilized for each welding process parameter and the 
number of membership functions is fixed as three repre- 
senting the linguistic variables like Low, Medium and 
High. Then, the new FIS is generated implementing grid 
partitioning technique which clusters all the data sets and 
creates the rules accordingly. The membership function 
parameters are initially assigned by ANFIS and are 
changed on training of the FIS. The combination of back 
propagation and the least square technique (Hybrid Op- 
timization Method) is used for the training process at the 
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Figure 3. Schematic sketch of ANFIS network. 
 

Table 1. RMS error in predicting weld bead shape para- 
meters by ANFIS models using trimf. 

least error value for about 250 - 300 iterations. The pa- 
rameters of the FIS developed are the following: 
 Weld bead shape parameter that 

the model predicts 
RMS error of 
training data 

RMS error of
testing data 

Depth of penetration 0.225474 0.418296 

Bead width 0.214941 0.520125 

HAZ width 0.217093 0.320211 

1 Total number of nodes: 78 

2 Number of linear parameters: 27 

3 Number of non-linear parameters: 27 

4 Number of fuzzy rules: 27 

5 Total number of parameters: 54 

6 Training data pairs: 47 

7 Checking data pairs: 9 

 
4.3. Multi-Objective Function 

To attain the target values of the weld bead shape pa- 
rameters like depth of penetration, bead width and heat 
affected zone width, the GA code should be made to con- 
verge for solutions. To facilitate the objective function, 
to converge at the solutions with less iteration, the least 
square error minimization is used as the objective func- 
tion. In this present work, the sum of the least square 
error values of the weld bead shape parameters multi- 
plied by weights, which are assigned based on their rela- 
tive importance, is chosen as the objective function as in 
Equation (1). Thus, the weighted sum converts the multi- 
objective optimization problem into a scalar one [25]. 

 
Then the rules that do not contribute to the output 

value are deleted. Ultimately, the numbers of rules are 
found to be 2, 15 and 26 in models predicting the depth 
of penetration, bead width and HAZ width respectively. 
The Root Mean Square (RMS) Error values were ob- 
tained in these ANFIS models using tri membership 
function for the training and testing data sets are given in 
Table 1. 

The Figure 4 clearly shows that there is a good agree- 
ment between the actual values and the predicted values 
of weld bead shape parameters in the models developed 
by ANFIS. The values of RMS error mention in Table 1 
show that there is an excellent correlation between the 
actual and the predicted values. Thus, the weld bead 
geometry and HAZ width predicted by the models cre- 
ated by ANFIS are found to be quite good. 

 
 

 
 

2

2

DOPT DOP
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DOPT

HAZWT HAZW

HAZWT

i

i

  

  

       (1) 

where ObjV is the objective function, DOPT, HAZWT 
are target values of depth of penetration, HAZ width re- 
spectively, DOP, HAZW are the depth of penetration, 
HAZ width values respectively of the ith individual. Al- 
though the objective function is mainly for minimizing 
the error values, GA always strives to maximize the solu- 
tions. 

4.2. Development of Genetic Algorithm Code 

The Genetic Algorithm code was developed in Matlab 
for optimizing the welding process parameters like cur-
rent, torch speed and arc voltage of Reduced-Activated 
Ferritic-Martensitic steels. The flowchart that represents 
the steps [13] involved in the code development by GA is 
given in Figure 5. 

Thus, the solutions are ranked based on the fitness in- 
dex, which is defined as the inverse of the objective 
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(a) 

 
(b) 

 
(c) 

Figure 4. Plots depicting the comparison between Actual 
values and predicted values by the ANFIS model with trimf 
for (a) Bead width; (b) Depth of penetration; and (c) HAZ 
width. 

 

Figure 5. Flowchart describing various steps in GA. 
 
function value, such that the solution with the low objec- 
tive function value has a high fitness index value. The 
solutions with the higher fitness values are selected for 
the next generation. 

4.4. Selection of Genetic Algorithm Parameters 

There are several parameters in Genetic Algorithm like 
number of individuals, number of generations, crossover 
type, crossover rate and mutation rate that control the 
speed of convergence. Deb [26] neatly explains the dif- 
ferent terminologies that are used in GA. These parame- 
ters are varied in the range as listed below before arriving 
at the optimum values: 
 

1 Number of individuals 60 - 100 

2 Number of generations 100 - 500 

3 Crossover type Single point/Double point/Multipoint

4 Crossover rate 0.69 - 0.95 

5 Mutation rate 0.001 - 0.01 
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The best set of parameters that lead to a fast conver- 
gence was selected based on the trial-and-error method 
and the influence of the parameters on the convergence 
of the solutions is studied. The parameters that produced 
exact convergence at a faster rate were chosen and are 
listed in Table 2. 

The maximum and the minimum values (the range) for 
each welding process parameter like current, torch speed 
and arc voltage were also specified. The initial popula- 
tion, in a binary form, is randomly selected within the 
specified values for the iteration process. Each individual 
in the initial population represents each welding process 
parameter. In the present case, the maximum value 
among all independent parameters was 250 (i.e. the value 
of current), therefore the length of each individual gene 
in the chromosome is chosen as eight (28 = 256). Since 
there are three parameters controlling the target process 
variables, the total length of the chromosome is 24 (8 × 
3). Standard gray coding is employed for decoding the 
binary representation of the strings along with logarith- 
mic scaling. 

Then the binary strings that are converted to real va- 
lues are evaluated for their fitness using the objective 
function. The weights are selected in such a way that 
their sum accounts to one and are assigned according to 
their influence on the target process parameters. Based 
on the fitness index values that are calculated as the in- 
verse of the objective function value, these chromosomes 
are ranked. 

For selection of the best chromosomes from this popu- 
lation, roulette wheel selection is used. In this method, 
the parents are selected based on their fitness index va- 
lues. The better the chromosomes are, the more chances 
to be selected they have. A virtual roulette wheel (pie 
chart) is created in which each individual is assigned a 
portion proportional to the normalized fitness value. An 
unbiased spinning of the roulette pointer is simulated 
through a random number generator, and the individual 
corresponding to the region where it points is picked up 
for further processing often with an assigned probability 
[26]. The chromosomes with higher fitness values are 
selected more times since they occupy more space on the 
pie [13]. This algorithm works similarly until it has gen- 
erated the entire population for the next generation. 

Then multi-point crossover was carried out on these 
selected chromosomes. The basic idea behind this multi- 
point crossover is that the parts of the chromosome re- 
presentation that contribute to the most to the perform- 
ance of a particular individual may not necessarily be 
contained in adjacent substrings. This method takes two 
parent strings from the mating pool and performs the 
exchange at some positions between them to form a new 
string (children). The crossover proceeds in three steps.  

Table 2. Genetic algorithm parameters selected for opti- 
mizing welding process parameters. 

Genetic algorithm parameters Value 

Number of individuals 100 

Number of generations 200 

Crossover type Multipoint crossover 

Crossover rate 0.72 

Mutation rate 0.004 

Selection strategy Roulette wheel selection

Length of individual chromosome 8 

Number of variables 3 

 
First, the two parent strings are selected randomly. Se- 

condly, a number of positions (as crossover sites) are 
chosen randomly in both the strings. Finally, the portions 
of the strings at the crossover sites are exchanged be- 
tween both the parents to form the offspring’s. This 
crossover is limited only to certain parents, which is de- 
termined by the crossover rate. Based on the error values 
in the predicted weld bead parameters, the crossover rate 
was fixed as 0.72 implying that crossover was carried out 
only on 72 chromosomes among the 100 chromosomes 
and the remaining chromosomes were carried over to the 
next generation without any alteration [25]. 

After the crossover, mutation was carried out on the 
offspring’s in which one allele of the gene is randomly 
replaced by another to produce a new genetic structure. 
The mutation probability is kept low at a rate of 0.004 to 
avoid any possible perturbations. The offspring’s are 
then decoded into real values. Then the objective func- 
tion is evaluated for this new set of chromosomes and 
they are ranked based on their fitness index values. From 
this mix of parents and offspring’s, 100 best chromo- 
somes are selected based on their fitness ranking. Then 
these newly selected chromosomes were reinserted for 
the next iterations. Similar iterations continue until there 
are no further changes in the value of the optimized pro- 
cess parameters or any of the terminating conditions like 
attaining a fixed number of generations, getting a solu- 
tion with the highest fitness ranking, lapsing the fixed 
computational time is achieved. In this case, arriving at 
the fixed number of generations was used as a terminat- 
ing condition. 

4.5. Validation of the GA Model 

In order to obtain the best results, the GA program was 
run ten times, giving the most of the time ten different 
results, which are nearly close. Then only the best pa- 
rameters were chosen, which give the better results, de- 
pending on the targets. Those chosen parameters are 
given in the Table 3. 
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The comparison between the actual and the target va- 
lues of DOP and HAZ width are given in Table 4. The 
comparison plots between the target and the actual weld 
bead shape parameters are presented in Figure 6. 

A close agreement was achieved between the target 
and the actual values of depth of penetration, HAZ width. 
Thus, the present work shows that Genetic Algorithm has 
the capability to optimize and produce a multiple set of 
welding process parameters that can lead to the desired 
weld bead profile and HAZ width accurately in RAFM 

steel. 

5. Conclusion 

Genetic algorithm in combination with ANFIS models 
has been used for optimizing the A-TIG welding process 
parameters to achieve the target weld bead geometry and 
HAZ width in RAFM steel. The methodology is imple- 
mented in two steps. First, independents ANFIS models 
were developed correlating the welding process parame- 

 
Table 3. Multiple welding process parameters for achieving the same target weld bead shape parameters. 

Target values are in mm Current (A) Torch speed (mm/min) Voltage (V) 

220.4902 128 14.1765 

233.5294 97.8824 14.1176 

221.8627 128.9412 14.2059 

Depth of penetration: 6 
HAZ width: 3 

223.9216 127.0588 14.1765 

250.0000 170.3529 13.6765 

189.6078 81.8824 10.5 

246.5686 168.9412 13.6765 

Depth of penetration: 6 
HAZ width: 2.5 

214.3137 139.7647 15.2353 

250 184.9412 13.6765 

250 200 16.5294 
Depth of penetration: 6 
HAZ width: 1.7 

206.7647 139.7647 17.9118 

250 199.5294 15.1765 

250 190.0588 15.0822 
Depth of penetration: 5 
HAZ width: 1.69 

250 190.1176 13.6471 

212.9412 192.9412 13.9706 

176.5686 158.5882 14.7353 

173.8235 157.1765 14.6176 

Depth of penetration: 4 
HAZ width: 1.6 

221.8627 192.9412 13.9706 

141.5686 178.3529 11.6471 Depth of penetration: 3 
HAZ width: 1.35 139.5098 164.7059 12.3235 

Depth of penetration:6.1 
HAZ width: 1.7 

250 184 13.6765 

 
Table 4. Comparison of the target and the actual depth of penetration and HAZ width. 

Target 

GA Model Suggested Welding process parameters Weld Bead Shape parameters 

Current (A) Torch Speed (mm/min) Voltage (V) DOP (mm) HAZ width (mm) 

222.5490 128 14.1765 5.998 2.999 

214.3137 139.7647 15.2353 5.997 2.499 

250 200 16.5294 6.004 1.698 

250 199.5294 15.1765 4.997 1.686 

212.9412 192.9412 13.9706 3.997 1.691 

141.5686 178.3529 11.6471 3.002 1.352 

250 184.9412 16.5294 6.057 1.699 
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Figure 6. Comparison between actual and target values of 
(a) Depth of penetration and (b) HAZ width. 
 
ters like current, torch speed and arc voltage with weld 
bead parameters like depth of penetration, bead width 
and HAZ width. Second, a GA code was developed to 
optimize the process variables to achieve the desired tar- 
get depth of penetration and HAZ width. The ANFIS 
models were used to evaluate the objective function in 
the GA code. A close agreement was achieved between 
the target and the actual values of depth of penetration 
and HAZ width. Thus, the present work shows that the 
GA has the capability to optimize and produce multiple 
sets of welding process parameters that can lead to the 
desired weld bead profile and HAZ width accurately in 
RAFM steel. 
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