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ABSTRACT 
 

Aims: This study aimed at generating synthetic monthly net radiation data conditioned on wind 
speed over Port Harcourt, Benue, Kano and Enugu in Nigeria. 
Duration of Study: The daily maximum and minimum Relative-Humidity, maximum and minimum 
air temperature, solar radiation and wind speed data was obtained from the International Institute 
of Tropical Agriculture (IITA) Ibadan, Nigeria for the period of thirty-four (34) years (1977-2010).  
Method: The Penman-Monteith (FAO-56) step by step method was used to compute the daily net 
radiation. The autocorrelation function was used to establish the fact that net radiation and wind 
speed exhibit the Markov property. Lastly, a two – state Markov Chain model and an indicator 
function of energy balance and imbalance was developed and used in the course of this work.  
Results: The finding reveals that net radiation is surplus over the study areas. The Lag one 
autocorrelation coefficient confirms the fact that an actual day net radiation and wind speed state 
depends on the previous day’s state. The monthly steady state probabilities of surplus net radiation 
conditioned on low wind speed is higher compared to monthly steady state probabilities of surplus 
net radiation conditioned on high wind speed. The indicator function of energy balance or 
imbalance reveals that there is energy imbalance over study areas. 
Conclusion: The generated synthetic net radiation data conditioned on wind speed preserved the 
characteristics of actual net radiation data when compared as observed in the study. This data is 
essential in the study of climate change, weather monitoring, agricultural meteorology and 
estimation of evapotranspiration. 
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1. INTRODUCTION 
 
Energy transfer in the atmosphere involves 
radiation in two different bands of wavelengths: 
solar radiation emitted by the sun and terrestrial 
radiation emitted by the earth’s surface and 
atmosphere. The difference between the solar 
radiation and terrestrial radiation is termed net 
radiation [1]. This difference creates an adiabatic 
heat sink over the polar-regions and heat source 
over the equatorial latitudes. Thus, there is a net 
transfer of energy from the energy-surplus region 
of the tropics to the energy-deficit region near the 
poles in order to maintain steady-state 
equilibrium within the climate system. 
Atmospheric wind patterns control how much and 
where heat energy is released into the 
atmosphere. This energy is redistributed within 
the climate system through diverse processes. 
The climate system tends to remain stable 
unless the earth experiences a force that shifts 
the net energy balance. Hence, a shift in the 
energy balance causes the average earth’s 
surface temperature to become warmer or 
cooler, resulting in various changes in the 
atmosphere, on land, and in the oceans [2].  
 
One of the major challenges that researchers in 
meteorology and climatology are facing all over 
the world is the development of accurate 
prediction models. The choice of using a 
deterministic or a stochastic model depends on 
the nature of the process to be modeled. 
Stochastic models take into account the 
autocorrelation structure of random variables and 
can also account for the correlation with external 
variables. The autocorrelation of a random 
process illustrates the correlation between values 
of the process at different points in time, as a 
function of the two times or of the time difference 
[3]. The nature of the physical processes 
considered in this research calls for a model with 
a discrete state in a discrete time stochastic 
process.  
 
Diverse authors ([4-8]) have estimated net 
radiation using different methods. [9] and [10] 
recommended the use of Penman Monteith’s 
(FAO-56) model in computing net radiation given 
that [11] and [12] encounter difficulties in 
computing net longwave radiation using the 
FAO-24 equation. [13] used the First and second 
order semi-Markov chains for wind speed 
modeling. [14] predicted the occurrence of 
surplus and deficit net radiation in Ibadan, 

Nigeria and [15] investigated the effect of High 
and Low wind speed on surplus net radiation in 
Makurdi. Despite the fact that so many 
researchers model physical processes using the 
Markov chain model [16-20], they did not 
generate net radiation data conditioned on wind 
speed over Port Harcourt, Benue, Kano and 
Enugu, Nigeria. This article proposes the Markov 
chain model approach to generating synthetic 
monthly net radiation data conditioned on wind 
speed over Port Harcourt, Benue, Kano and 
Enugu, Nigeria. Data generation is very 
significant in stochastic hydrology and is used by 
hydrologists for many purposes such as reservoir 
sizing, water resources, planning, management 
and climate variability analyses. 
 

1.1 Penman-Monteith’s (FAO-56) Model 
 
The Penman-Monteith’s (FAO-56) step by step 
method was used to compute the daily net 
radiation and average out monthly. This includes: 
 

The inverse relative distance Earth-Sun )( r  is 

given as:  
 

                   (1)  
 
 

 

where j  is number of the day in the year 

between 1 (1 January) and 365 or 366 (31 
December). 
 
The solar declination (δ) can be found from the 
approximate equation [1], 
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The sun angle )( s  is given: 
 

)]tan()tan(arccos[  s         (3) 
 

where   is the latitude of a particular location. 

The extraterrestrial radiation )( aR , for each day 

of the year can be estimated using;  
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where scG  is solar constant =1367w/m
2 
[1]. 
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The actual vapor pressure )( ae can be computed 

[1]; 
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where )( minTe  and )( m axTe  are daily saturation 

vapour pressure at minimum and maximum 

temperature, and 
maxRH

, minRH are maximum 

and minimum relative humidity. 

 

The clear-sky radiation 
soR is given by [1]: 

 

aso RZER )510275.0( 
                   (6)

 

 
where Z is the elevation above sea level.  
 

The net terrestrial (long wave) radiation )( TR is 

proportional to the absolute temperature of the 
surface raised to the fourth power. This relation 
is expressed quantitatively by the Stefan-
Boltzmann law as given below: 
 

 

                                                                          

(7) 
 

where   is Stefan-Boltzmann constant 

[4.903x10
-9

MJ K
-4

 m
-2

day
-1

] and 
sR  is incoming 

solar radiation, MJm
-2

 day
-1

. 

 

Lastly, the net radiation (
nR ) which is the 

difference between the incoming net shortwave 

radiation ( nsR ) and the outgoing net terrestrial 

radiation ( TR )
 
is given by;  

 

 Tnsn RRR                                           (8) 

 

 sns RaR )1(                                            (9) 

 
where ‘a ’is albedo = 0.3 [21]. 
 
 
 

1.2 Autocorrelation 
 

A series of data may have observations that are 
not independent of one another. Time series are 
very complex because each observation is 
dependent upon the previous observation, and is 
often influenced by more than one previous 
observation. These influences are called 
autocorrelations. Autocorrelation coefficients 
measure correlations between observations at a 
certain distance apart. An autocorrelation 
coefficient at lag k can be found by:  
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This is the Covariance (xt, xt+k) divide by                                    
the Variance (xt). A lag is defined as an event 
occurring at time‘t+k’ (k>0), behind an                        
event occurring at time ‘t’ at lag K. The lag                  
one autocorrelation can be specified by  
matching the conditional probability P (D|D)             
[22]. 
 

1.3 Markov Chain 
 

Markov chain is a stochastic process       
0,1,2,…… that takes on a finite or countable 

number of possible values and if        then the 

process is said to be in state   at time   . 
Supposing that the process is in state i, there is a 

fixed probability     that it will next be in state  . 

That is; 
 

                                                 
 

                                          (11) 

 
For all states               and      .  
 
For a first-order Markov chain, the future state 
     is independent of the previous states 

                    but depends only on the 

present state    [23].  
 

1.4 Transition Probability Matrix 
 
A Markov chain transition matrix is a square 
array describing the probabilities of the chain 
transiting from one state to another. This 
transition probability    is given as: 
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The elements ijP
 
are also called stationary 

probabilities. They are defined by:  
 

ijnn piXjXP   )/( 1                 (12b) 

 

1.5 N-Step Transition Probability Matrix  
 

For any value of n            the n
th
 power of 

the matrix P specify the probabilities    
  that the 

chain will move from state    to    is called the n-

step probability matrix. This is based on the 
Chapman Kolmogorov equation, which states as 
follows;  
 

For any      
 

                    
  

      
              (13) 

 

where   denotes the matrix of n-step transition 
probability [24]. 
 

1.6 Steady State Probabilities of a Markov 
Chain 

 

Consider a Markov chain with Z-states and the 
row vector  
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where                        , 

              is called the steady state 

vector of the Markov Chain.   can be obtained 

by solving the relation; 
 

ijP                                                (16) 
 

 where ijP
 
are the stationary probabilities. 

 

2. METHODOLOGY 
 

2.1 Source of Data  
 

The daily maximum and minimum relative 
humidity, maximum and minimum air 
temperature, solar radiation and wind speed  

data was obtained from the International  
Institute of Tropical Agriculture (IITA) Ibadan, 
Nigeria for the period of thirty-four (34) years 
(1977-2010).  
 

2.2 Data Transformations Employed in 
the Modeling Process 

 

The daily wind speed and the computed daily net 
radiation were first transformed into sequence of 
binary events. The difference between the 
incoming solar radiation and outgoing               
terrestrial radiation ought to be zero. When the 
difference is greater than one or less than one, 
net radiation is termed surplus or deficit net 

radiation respectively. For any thK  day, a 

random variable nkR  is defined to represent this 

event, with the realization ‘0’ if the daily net 
radiation (Rn) is negative (deficit) and ‘1’ if the 
daily net radiation (Rn) is positive (surplus). A 
random variable     was defined for daily wind 
speed (W) with realization ‘0’ if ‘W’ is below 

average (  ) and ‘1’ if the daily wind speed (W) is 

above average (  ). This is termed low and high 
wind speeds respectively. Mathematically we 
have;  
 

    

  
                                     

                                   
        

   

  
      k                      

      k                       

        

 
where;              (Days), W is daily wind 

speed and    is the average wind speed.  
 

Let X = {S/H, S/L, D/H and D/L} represent the 
state space of a four-state (surplus net radiation 
conditioned by high wind speed, surplus net 
radiation conditioned by low wind speed, deficit 
net radiation conditioned by high wind speed and 
deficit net radiation conditioned by low wind 
speed) first order Markov Chain. The Markov 
Chain model for this work is specified as; 

 

 

for all ),...,,( 10 Xiii n                               (18) 

 

where Xn+1 is S/Hn+1 or D/Hn+1 or S/Ln+1 or D/Ln+1 
Conditioned on S/Hn or D/Hn or S/Ln or D/Ln.  
 

 The chance of a future state )( 1nX  occurring 

depends only on the immediate past state )( nX . 



 
 
 
 

Ojochenemi et al.; IJECC, 12(11): 114-124, 2022; Article no.IJECC.88129 
 
 

 
118 

 

In order to model the relationship between net 
radiation and wind speed, a new transformation 
was developed using equations 17a and 17b. For 
any K

th
 day, a sequence of binary events were 

captured using a random variable Xk with the 

realizations ‘1’ if nkR  is 1(surplus) and     is 1 

(high); ‘2’ if nkR is 1 (surplus) and     is 0 (low); 

‘3’ if nkR  is 0 (deficit) and     is 1 (high); lastly 

‘4’ if nkR is 0 (deficit) and     is 0 (low). This 

process is known as conditioning net radiation on 
wind speed. This was done daily using the                    
net radiation state (surplus and deficit) and                  
wind speed state (high and low) for each                
month. Quantitatively, this process is expressed 
as; 
 

   

 

                                                  
                                                   
                                                   
                                                  

   

                                                                                                    (19a) 
 
It was observed that net radiation is completely 
surplus over Makurdi, Kano, Port Harcourt and 
Enugu, Nigeria. Therefore, in order to model the 
relationship between net radiation and wind 
speed in these stations, equation (19a) was 
reduced to: 
 

     
                                                 

                                                  
                 

                                                                                                                  (19b) 
 
In this work, the steady-state probabilities for the 
first order Markov chain model for the four states 
                      were determined using the 
computational formula: 
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The steady-state probabilities for the first order 
Markov chain model for the two states 
          were determined using the 
computational formula: 
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where                     are steady-state 
probabilities of a surplus net radiation 
conditioned on high wind speed (S/H), surplus 
net radiation conditioned on low wind speed 
(     , deficit net radiation conditioned on high 
wind speed (      and deficit net radiation 
conditioned on low wind speed (D/L) 
respectively.  
 
The mean recurrence time (in days) for each 
state is modeled as: 
 

 
1

1
 ,

2

1
 ,

3

1
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4

1
 .                 (21) 

 
Due to the huge amount of data involved in this 
work, a computer program was written in Pascal 
programming language version 1.5 for obtaining 
the transition counts, transition probabilities, N-
step transition matrix and steady state 
probabilities.  
 

2.3 Indicator functions of Energy balance 
 

An indicator function of energy balance and 
imbalance was developed in this study. Energy 
balance occurs when the chance of surplus net 
radiation conditioned on high wind speed equals 
the chance of surplus net radiation conditioned 
on low wind speed. Mathematically,  
 

 IEbc (P) = 

 
 
 

 
 
                                    

                    
 
 

                                
 

     (22)  

 

where IEb (P) is Indicator function of energy 

balance;                   are probabilities of 
surplus net radiation conditioned on high and low 
wind speed. 
 

2.4 Generating Net Radiation Synthetic 
Data Conditioned on Wind Speed 

 

The monthly retained (not transferred) and 
transferred net radiation synthetic data was 
generated using the steady-state probabilities. 
Mathematically; 
 

               

                                                                 
 

where                are retained net radiation 
synthetic data, transferred net radiation synthetic 
data, and actual value of net radiation.  
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3. RESULTS AND DISCUSSION 
 
Using the Penman-Monteith’s (FAO-56) step by 
step method, average monthly net radiations 
were computed over Makurdi, Port Harcourt, 
Enugu and Kano as presented in Table 1. It was 
observed that monthly net radiation across the 
study areas were surplus. Surplus net radiation 
occurs when the amount of solar radiation 
absorb by the earth surface is greater than the 
amount of terrestrial radiation emitted. The 
average monthly wind speed is maximum in June 
(Makurdi), April (Port Harcourt), March (Enugu 
and Kano) and minimum in October (Makurdi), 
December (Port Harcourt), November (Enugu) 
and December (Kano) as presented in Table 1. 
However, high wind speeds ought to transfer 
surplus net radiation from these regions to deficit 
net radiation regions in order to maintain the 
climate system in these regions. 
 

The Lag one autocorrelation coefficient of net 
radiation and wind speed across locations 
confirms the fact that an actual day net radiation 
or wind speed state depends on the previous 
day’s state. Hence, there is a significant higher 
autocorrelation between net radiation and wind 
speed at lag one (p-value < 0.05) than at other 
lags as presented in Table 2. 
 
The monthly transition probability of net radiation 
was modeled using the Markov chain approach 
mentioned in Section 1.4. The monthly first order 
transition probability matrix is of size 2X2, which 
is shown in Table 3(a) and 3(b). In Table 3(a) 
and 3(b), each element shows the probability of 
the next net radiation conditioned on wind speed 
state based on the current state. It reveals that 
the highest probability occurs on the diagonal of 
the matrix. Consequently, if the current        
surplus net radiations conditioned on high or

Table 1. Average monthly net radiation and wind speed 
 

  MAKURDI PORT HARCOURT ENUGU KANO 

MONTH N. R. W. S. N. R. W. S. N. R. W. S. N. R. W. S. 
JAN. 9.61 4.34 9.79 4.21 9.68 4.29 9.68 3.99 
FEB. 10.31 4.27 9.98 4.23 10.37 4.56 10.56 4.43 
MAR. 9.48 4.26 10.01 4.34 10.44 4.87 11.23 4.92 
APR. 10.18 4.25 9.58 4.49 10.21 4.75 11.35 4.84 
MAY 10.57 4.28 9.86 4.36 9.95 4.33 11.02 4.45 
JUNE 9.94 4.80 10.35 4.40 9.62 4.60 10.33 4.49 
JULY 9.82 4.60 10.46 4.47 9.38 4.54 9.92 4.51 
AUG. 10.02 4.37 10.52 4.42 9.32 4.42 9.70 4.20 
SEPT. 9.70 4.28 10.69 4.44 9.77 4.40 10.17 4.03 
OCT. 9.86 4.08 10.32 4.22 9.64 4.55 10.71 3.64 
NOV. 10.36 4.41 9.83 4.34 9.61 4.15 10.52 3.60 
DEC. 10.16 4.58 9.80 4.07 9.44 4.35 9.40 3.52 

N.R.-Net Radiation (MJm
-2

 day
-1

) W.S. - Wind Speed (m/s) 

 
Table 2. Lag one autocorrelation coefficient of Net radiation and wind speed 

 

      BOX-LUNG STATISTIC 

STATION PARAMETERS AUTO. COEFF. VALUE P-VALUE  REMARK 

MAKURDI Net radiation 0.668 164.377 0.00 Significant 
 Wind speed 0.52 99.48 0.00 Significant 
PORT HARCOURT Net radiation 0.635 148.413 0.00 Significant 
 Wind speed 0.475 82.036 0.00 Significant 
ENUGU Net radiation 0.799 98.402 0.00 Significant 
 Wind speed 0.516 235.75 0.00 Significant 
KANO Net radiation 0.727 194.765 0.00 Significant 
  Wind speed 0.525 101.788 0.00 Significant 

P-Value< 0.05=Significant 
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Table 3(a). Probability transition matrix of first order Markov Chain Model (January to June) 
 

STATIONS SEQ.   JANUARY   FEBURARY      MARCH      APRIL        MAY        JUNE 

    S/H S/L S/H S/L S/H S/L S/H S/L S/H S/L S/H S/L 

MAKURDI S/H 0.60 0.40 0.60 0.40 0.64 0.36 0.61 0.39 0.60 0.40 0.65 0.35 
 S/L 0.25 0.75 0.26 0.74 0.28 0.72 0.24 0.76 0.29 0.71 0.24 0.76 
ENUGU S/H 0.62 0.38 0.64 0.36 0.67 0.33 0.6 0.4 0.62 0.38 0.59 0.41 
 S/L 0.28 0.72 0.27 0.73 0.25 0.75 0.31 0.69 0.31 0.69 0.27 0.73 
P/H S/H 0.62 0.38 0.59 0.41 0.64 0.36 0.66 0.34 0.57 0.43 0.65 0.35 
 S/L 0.33 0.67 0.27 0.73 0.25 0.75 0.3 0.70 0.29 0.71 0.27 0.73 
KANO S/H 0.74 0.26 0.65 0.35 0.68 0.32 0.61 0.39 0.60 0.40 0.56 0.44 
  S/L 0.22 0.78 0.29 0.71 0.28 0.72 0.32 0.68 0.32 0.68 0.33 0.67 

 
Table 3(b). Probability transition matrix of first order Markov Chain Model (July to December) 

 

STATIONS SEQ.        JULY    AUGUST   SEPTEMBER    OCTOBER  NOVEMBER  DECEMBER 

    S/H S/L S/H S/L S/H S/L S/H S/L S/H S/L S/H S/L 

MAKURDI S/H 0.56 0.44 0.61 0.39 0.60 0.40 0.65 0.35 0.62 0.38 0.61 0.39 
 S/L 0.29 0.71 0.28 0.72 0.28 0.72 0.28 0.72 0.25 0.75 0.28 0.72 
ENUGU S/H 0.66 0.34 0.66 0.34 0.60 0.40 0.67 0.33 0.62 0.38 0.58 0.42 
 S/L 0.24 0.76 0.27 0.73 0.26 0.74 0.19 0.81 0.28 0.72 0.27 0.73 
P/H S/H 0.66 0.34 0.63 0.37 0.66 0.34 0.57 0.43 0.56 0.44 0.56 0.44 
 S/L 0.28 0.72 0.25 0.75 0.22 0.78 0.28 0.72 0.25 0.75 0.34 0.66 
KANO S/H 0.59 0.41 0.68 0.32 0.61 0.39 0.61 0.39 0.68 0.32 0.68 0.32 
  S/L 0.28 0.72 0.26 0.74 0.28 0.72 0.30 0.70 0.20 0.80 0.22 0.78 

S/H – Surplus net radiation conditioned on High wind speed. S/L – Surplus net radiation conditioned on Low wind speed
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low wind speeds state are known, it is most likely 
that the next state will be in the next category. 
Surplus net radiation conditioned on low wind 
speed transiting into the same state has the 
highest probabilities over Port Harcourt, Makurdi, 
Enugu and Kano as shown in Table 3(a) and 
3(b). 
 
Table 4 presents the monthly steady state 
probabilities of surplus net radiation conditioned 
on high and low wind speed. Surplus net 
radiation conditioned on low wind speed has the 
highest probabilities across study locations. 
Since the monthly steady state probabilities are 
not equal, the indicator function of energy 
balance (section 2.4) reveals that there is energy 
imbalance in these regions. These imbalances 
results to complex but organized patterns of 
energy and water transfer in the atmosphere. It 
also determines the weather and climate of these 

regions and greatly moderates the air 
temperature. 
 
The mean reoccurrence times were evaluated 
using equation 22, which is the number of days it 
takes for a given state to reoccur. On the 
average, it takes 2.44, 2.40, 2.31 and 2.41 days 
for surplus net radiation conditioned on high wind 
speed and 1.69, 1.72, 1.77 and 1.72 days for 
surplus net radiation conditioned on low wind 
speed to reoccur in Makurdi, Port Harcourt, Kano 
and Enugu respectively (Table 5). Thus, the 
weather of Enugu would be hot for 2.41 days and 
cool for 1.72 days on the average, resulting in 
harsh and hot weather or climate at the long run. 
This result further agrees with [25] and possibly 
explains why Enugu is hot all throughout the 
year. According to [26], heat waves occur when 
the maximum temperature of a place is greater 
than 35

o
C for 3 days or more consecutively.

 

Table 4. Monthly steady state probabilities of surplus net radiation conditioned on high or low 
wind speed 

 

  MAKURDI PORT HARCOURT ENUGU KANO 

MONTH S/H S/L S/H S/L S/H S/L S/H S/L 
JAN. 0.38 0.62 0.47 0.54 0.42 0.58 0.46 0.54 
FEB. 0.39 0.61 0.4 0.6 0.43 0.57 0.45 0.55 
MAR. 0.44 0.56 0.41 0.59 0.43 0.57 0.47 0.53 
APR. 0.38 0.62 0.47 0.53 0.44 0.56 0.45 0.55 
MAY 0.42 0.58 0.4 0.6 0.45 0.55 0.44 0.56 
JUNE 0.41 0.59 0.44 0.57 0.4 0.6 0.43 0.57 
JULY 0.4 0.6 0.45 0.55 0.41 0.59 0.41 0.59 
AUG. 0.42 0.58 0.4 0.6 0.44 0.56 0.45 0.55 
SEPT. 0.41 0.59 0.39 0.61 0.39 0.61 0.42 0.58 
OCT. 0.44 0.56 0.39 0.61 0.37 0.64 0.44 0.57 
NOV. 0.4 0.6 0.36 0.64 0.42 0.58 0.39 0.62 
DEC. 0.42 0.58 0.44 0.56 0.39 0.61 0.41 0.59 

S/H – Surplus net radiation conditioned on High wind speed. S/L – Surplus net radiation conditioned on Low wind 
speed 

 

Table 5. Monthly mean reoccurrence times (days) across locations 
 

  MAKURDI PORT HARCOURT ENUGU KANO 

MONTH S/H S/L S/H S/L S/H S/L S/H S/L 
JAN. 2.63 1.61 2.15 1.87 2.36 1.74 2.18 1.85 
FEB. 2.56 1.64 2.52 1.66 2.33 1.75 2.21 1.83 
MAR. 2.27 1.79 2.44 1.69 2.32 1.76 2.14 1.88 
APR. 2.63 1.61 2.13 1.88 2.29 1.78 2.22 1.82 
MAY 2.38 1.72 2.48 1.68 2.23 1.81 2.25 1.8 
JUNE 2.44 1.69 2.3 1.77 2.52 1.66 2.33 1.75 
JULY 2.5 1.67 2.21 1.82 2.42 1.71 2.46 1.68 
AUG. 2.38 1.72 2.48 1.68 2.26 1.8 2.23 1.81 
SEPT. 2.44 1.69 2.54 1.65 2.54 1.65 2.39 1.72 
OCT. 2.27 1.79 2.54 1.65 2.74 1.57 2.3 1.77 
NOV. 2.5 1.67 2.76 1.57 2.36 1.74 2.6 1.63 
DEC. 2.38 1.72 2.29 1.77 2.56 1.64 2.46 1.69 

S/H – Surplus net radiation conditioned on High wind speed. S/L – Surplus net radiation conditioned on Low wind 
speed 
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Fig. 1. Monthly average air temperature (
o
C) across locations 

 

Table 6. Synthetically generated monthly net radiation data conditioned on high and low wind 
speed 

 

Months Makurdi Kano Port Harcourt Enugu 

                                  

January 3.652 5.958 4.435 5.249 4.555 5.240 4.102 5.573 
February 4.021 6.289 4.784 5.777 3.964 6.020 4.451 5.924 
March 4.171 5.309 5.242 5.983 4.106 5.908 4.501 5.943 
April 3.865 6.305 5.120 6.232 4.495 5.089 4.463 5.750 
May 4.435 6.125 4.891 6.125 3.972 5.884 4.469 5.484 
June 4.075 5.865 4.433 5.901 4.501 5.846 3.821 5.803 
July 3.928 5.892 4.027 5.892 4.726 5.730 3.883 5.497 
August 4.208 5.812 4.344 5.353 4.241 6.283 4.127 5.190 
September 3.977 5.723 4.250 5.917 4.200 6.487 3.850 5.922 
October 4.334 5.516 4.657 6.049 4.066 6.254 3.517 6.119 
November 4.144 6.216 4.048 6.467 3.558 6.272 4.076 5.538 
December 4.267 5.893 3.826 5.574 4.271 5.525 3.690 5.748 

 
The means reoccurrences time reveals that 
Makurdi, Port Harcourt, Kano and Enugu would 
be hot for 2.44, 2.40, 2.31 and 2.41 days with an 
air temperature ranging from 32-37.5°C as 
presented in Fig. 1. Hence, the risk of heat 
related illness is low for now across these 
regions because the weather is hot for less than 
three (3) days and the air temperature varies 
daily. 
 
A shift in net radiation can result to a shift in air 
temperature over Makurdi, Port Harcourt, Kano 
and Enugu. One of the major indicators of 
climate change is the increase or decrease of air 
temperature according to [2]. Warmer 
temperatures can result to changes in the 
frequency and size of intense precipitation 
events, which may in turn affect the frequency 
and size of river flooding. Makurdi has witnessed 

the highest frequencies of extreme rainfall events 
and flood frequencies between the periods of 
1996 and 2001 [27]. Bigger or more frequent 
floods could damage bridges, roads, homes, and 
other infrastructure; harm or displace people; 
wipe out farmers’ crops; pollute water supplies; 
and disrupt ecosystems by displacing aquatic 
life, increasing soil erosion and impairing the 
quality of water [28]. 40% of the rural inhabitants 
are committed to agricultural activities in River 
state. A variety of short season crops including 
cocoyam, water yam, sweet-potato, groundnut, 
maize, sugar-cane and assorted vegetables are 
grown in Port Harcourt [29]. A continuous 
increase in the air temperature in Port Harcourt 
can affect all these crops negatively. Warmer air 
temperatures connected with climate change can 
increase the mosquito development, incubation 
of the disease within a mosquito and the biting 
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rates [30] across these study areas. An increase 
in air temperature can also trigger quite a 
number of tropical diseases such as célèbre-
spinal-meningitis, heat cramps, malaria, heat 
strokes, and so on [31].  
 

Table 6 shows the synthetically generated 
monthly net radiation data conditioned on high or 
low wind speed across locations. This was 
achieved using equation 23 under section 2.4. 
The amount of surplus net radiation (MJm

-2
day

-1
) 

retained (     over Makurdi, Port Harcourt, Kano 
and Enugu is higher compared to the amount of 
surplus net radiation transferred (   ). The wind 
speed is so low (Table 1) to transfer all the 
surplus net radiation from these locations, 
thereby resulting in an increase in the air 
temperature in these locations.  
 

5. CONCLUSION 
 

This paper presents a first order Markov chains 
model to syntactical generate monthly net 
radiation data conditioned on high or low wind 
speed over Makurdi, Port Harcourt, Kano and 
Enugu, Nigeria using a 34-years (1977-2010) 
real time weather data. The results show that the 
synthetic net radiation data conditioned on high 
or low wind speed (Table 6) preserved the 
characteristics of actual net radiation data (Table 
1). The most important benefit of this method is 
that the synthetic generated data can be helpful 
in the study of weather monitoring, agricultural 
meteorology, climate change, energy transfer 
between two regions and evapotranspiration. 
One of the greatest ambiguities in modeling 
climate data under climate change state is the 
uncertainty in future climate predictions. Thus, if 
future climate state is known with adequate 
accuracy, the Markov Chain model available now 
can be adapted to generate climate data for the 
new state. 
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