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Abstract

Assembling and powering ribosomes are energy-intensive processes requiring fine-tuned

cellular control mechanisms. In organisms operating under strict nutrient limitations, such as

pathogenic microsporidia, conservation of energy via ribosomal hibernation and recycling is

critical. The mechanisms by which hibernation is achieved in microsporidia, however,

remain poorly understood. Here, we present the cryo–electron microscopy structure of the

ribosome from Paranosema locustae spores, bound by the conserved eukaryotic hiberna-

tion and recycling factor Lso2. The microsporidian Lso2 homolog adopts a V-shaped confor-

mation to bridge the mRNA decoding site and the large subunit tRNA binding sites,

providing a reversible ribosome inactivation mechanism. Although microsporidian ribo-

somes are highly compacted, the P. locustae ribosome retains several rRNA segments

absent in other microsporidia, and represents an intermediate state of rRNA reduction. In

one case, the near complete reduction of an expansion segment has resulted in a single

bound nucleotide, which may act as an architectural co-factor to stabilize a protein–protein

interface. The presented structure highlights the reductive evolution in these emerging path-

ogens and sheds light on a conserved mechanism for eukaryotic ribosome hibernation.

Introduction

Ribosome biogenesis and functionality are energy-intensive processes accounting for 80% of a

cell’s ATP usage in nutrient-rich conditions [1,2]. When nutrients are scarce, many cells tran-

sition to a dormant state typified by low metabolic activity [3]. In this state, energy is conserved

by inhibiting ribosomes via a diverse family of proteins known as hibernation factors [4].

These factors play an essential role in both the inactivation of ribosomes and their recovery

post-dormancy [5–7]. Several novel hibernation factors have been recently identified [7–9],
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including the conserved microsporidian dormancy factor Mdf1 and the species-specific factor

Mdf2 [9].

Microsporidia are obligate intracellular parasites that infect organisms as evolutionarily

divergent as protists and mammals [10]. Widespread microsporidian infections have particu-

larly deleterious effects on immunodeficient patients [11] and commercially important silk-

worms and honeybees [12]. Despite their perniciousness, recent work has shown that certain

microsporidia can impair the transmission of Plasmodium falciparum, the causative agent of

malaria, thereby providing a potential mechanism to control this highly infectious human

pathogen [13].

The microsporidian life cycle alternates between multiple proliferative intracellular stages

and a sporous, metabolically inactive environmental stage [10]. Due to extreme genome com-

paction and loss of seemingly essential pathways such as nucleotide synthesis [14] and ATP

generation via oxidative phosphorylation [15], the intracellular stages depend heavily on host

cells for their energy requirements [14]. In the spore stage, the limited availability of nutrients

and the requirement for rapid reactivation of essential cellular processes after host infection

necessitate efficient reversible hibernation mechanisms.

The extreme genome compaction in microsporidia, which has resulted in the smallest

known eukaryotic genomes [16,17], has affected not only metabolic genes but also ancestral

macromolecules like the ribosome [9]. In most eukaryotes, ribosomes contain expanded rRNA

elements, termed expansion segments (ESs), and numerous eukaryotic-specific proteins [18].

While most of these ESs stabilize the additional layer of proteins [19], it is suggested that some

aid in ribosome biogenesis [20], and others extend the functional repertoire of the ribosome by

providing additional interaction interfaces for regulatory factors [21]. Interestingly, microspori-

dia have reversed this evolutionary expansion and removed previously acquired elements as a

part of their continued genomic compaction [9,22]. In the extreme case of Vairimorpha neca-
trix, this has created one of the smallest eukaryotic cytoplasmic ribosomes [9]. It is, however,

unknown how other microsporidian organisms have adapted their ribosome structure to com-

pensate for large-scale ES removal. Therefore, microsporidia are ideal model organisms to

study rRNA evolution, as well as ribosomal hibernation due to their conspicuous dormancy.

Here, we use cryo–electron microscopy (cryo-EM) to solve the structure of the ribosome

from Paranosema locustae, a species of microsporidium used as a microbial insecticide to con-

trol grasshopper and locust pests [23,24]. A comparative analysis of the ribosomal ESs present

in P. locustae with the related Saccharomyces cerevisiae (yeast) and V. necatrix (microspori-

dium) structures gives insights into the reductive evolution of the ribosome in microsporidia.

A single structural nucleotide, discovered at the interface of 2 ribosomal proteins, serves as the

remaining element of a removed rRNA segment and may act as the most minimal version of

an ES. Furthermore, we identify a non-ribosomal protein bound to the P. locustae spore ribo-

some as Lso2 (late-annotated short open reading frame 2), a recently discovered hibernation

and recovery factor [8]. We present the first structural description of this factor in microspori-

dia and propose a conserved functional role in other eukaryotic organisms. Together, these

results provide insights into the reductive nature of microsporidian evolution and unravel a

novel mechanism of translational shutdown in the extracellular stage of these emerging

pathogens.

Results

The cryo-EM structure of the ribosome from P. locustae
To study the microsporidian ribosome and its interaction partners during the dormant extra-

cellular stage, we isolated ribosomes from P. locustae spores and analyzed them using cryo-EM
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(Figs 1 and S1). A consensus refinement resulted in a cryo-EM map at an overall resolution of

2.7 Å, with a well-resolved large subunit (LSU) and a dynamic and less-resolved small subunit

(SSU)–head region. A 3D classification focused on the mobile SSU-head was performed to

improve this region, resulting in 2 states with either a rotated (State 1, 37.7%) or non-rotated

(State 2, 39.6%) conformation (S1B Fig). The non-rotated State 2 contains additional, but

poorly resolved, density for an exit site (E-site) tRNA (Fig 1). Multibody refinement of State 2

improved the local resolution for the LSU (2.83 Å), the SSU-body (3.03 Å), and the SSU-head

(3.27 Å) (S1B and S2 Figs). The improved resolution allowed for model building of the P.

locustae State 2 ribosome structure, using the S. cerevisiae ribosome as a starting template [19]

(S1 and S2 Tables). The L1 stalk, L7/L10 stalk, and parts of the SSU-beak were not resolved

and therefore not included in the final model. We observed an additional acceptor site (A-

site)/peptidyl site (P-site) helical density, spanning from the SSU to the LSU central protuber-

ance (Fig 1). The high occupancy (92%; S1B Fig) and resolution of this density allowed for its

unambiguous assignment as the eukaryotic hibernation and recovery factor Lso2 [8]. Both

conformations of the SSU-head contain Lso2 density, suggesting it neither stabilizes one par-

ticular state nor binds in concert with the E-site tRNA. In addition, we discovered density for a

nucleotide with a local resolution of 3 Å in the interface between uL6 and eL20 (Figs 1 and

S2D), acting as a remnant of a removed ES.

The ribosome hibernation and recovery factor Lso2 blocks key catalytic

sites

The microsporidian homolog of Lso2 is bound to the central cavity of the P. locustae ribosome

(Figs 1 and 2). In yeast, Lso2 has been recently identified as a hibernation and recovery factor

that binds to ribosomes during starvation [8]. A BLAST search allowed us to verify the pres-

ence of Lso2 in almost all sequenced microsporidia (S3A Fig). In P. locustae, Lso2 is a

77-amino-acid protein comprising 2 consecutive alpha helices (α1, α2), separated by a small

hinge region (Figs 2 and S3A). Residues 2–76 are well resolved and included in our model.

Fig 1. The cryo-EM structure of the P. locustae ribosome, bound to Lso2 and a structural nucleotide. Composite cryo-EM map consisting of maps focused on the

LSU, SSU-body, and SSU-head is shown (EMD-11437). The complete ribosome is shown in the center, while the SSU (left) and LSU (right) are depicted in isolation on

both sides. The SSU is colored in shades of yellow (RNA in gold, proteins in light yellow), while the LSU is colored in shades of blue (RNA in dark blue, proteins in light

blue), with selected ribosomal proteins labeled and colored in shades of green. The hibernation and recovery factor Lso2 is highlighted in red. The inset showcases the

nucleotide-binding site (purple) at the interface between the 2 LSU proteins uL6 and eL20 (shades of green), displayed by superimposing the cryo-EM map with the

molecular model. C, C-terminus; cryo-EM, cryo–electron microscopy; E-tRNA, exit site tRNA; LSU, large subunit; N, N-terminus; SSU, small subunit.

https://doi.org/10.1371/journal.pbio.3000958.g001
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The N-terminal extension preceding α1 contacts the SSU mRNA binding channel between

helices h24, h28, and h44 (Fig 2D). The first helix (α1) connects this binding site with ribo-

somal protein uL5 at the central protuberance of the LSU (Fig 2E). Several positively charged

and conserved residues (K9, K10, K17) anchor the beginning of α1 to the decoding center in

the SSU rRNA (Fig 2D). While spanning the central cavity, Lso2 anchors to the 25S rRNA

backbone of helix-69 using R16, and stacks W40 between R55 and R60 from uL5 (Fig 2E).

After a short hinge region, a second helix (α2) extends from the LSU P-site to the A-site by fit-

ting into the major groove of H38A (Fig 2F). Here, a patch of conserved positively charged res-

idues interact with the rRNA backbone and anchor the C-terminal end of α2 to uL16.

Lso2 blocks the binding sites of 3 essential components of the translational machinery.

While the N-terminal extension occupies the mRNA channel in the SSU, α1 superimposes

with the D-arm of the P-site tRNA, and α2 sterically blocks the T-arm of both P-site and A-

site tRNAs (Fig 2B and 2C). Extensive binding site overlap supports the role of Lso2 as a

Fig 2. Microsporidian Lso2 interactions with the ribosome. (A) Slab view of Lso2 (red) bound ribosomes along with the cryo-EM density for E-site tRNA

(sky blue). Lso2 ends contacting the SSU and LSU are indicated as N and C, respectively (PDB 6ZU5). (B) Lso2 prevents tRNA and mRNA binding in the A-

and P- site as shown by the superimposed tRNAs (aquamarine, from PDB 4V6F) and an mRNA (pink surface, from PDB 4V6F). (C) An isolated view of Lso2

sterically blocking the codon–anticodon site, as well as the D- and T-arm of the P-site tRNA. The C-terminal end overlaps with the T-arm of the A-site tRNA.

(D–F) Molecular contacts between Lso2 and the ribosome, shown as cryo-EM density (mesh) and the structural model. Lso2 residues contacting the rRNA or

ribosomal proteins are indicated. A-site, acceptor site; A-tRNA, acceptor site tRNA; C, C-terminus; cryo-EM, cryo–electron microscopy; E-site; exit site; E-

tRNA, exit site tRNA; LSU, large subunit; N, N-terminus; P-site, peptidyl site; P-tRNA, peptidyl site tRNA; SSU, small subunit.

https://doi.org/10.1371/journal.pbio.3000958.g002
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hibernation factor in microsporidia and indicates that its removal is required for reactivation

of protein synthesis upon infection of a host. The general conservation of SSU- and LSU-inter-

acting residues suggests that Lso2 would adopt a similar binding mechanism in other micro-

sporidia as well as other eukaryotes (S3 Fig).

A bound nucleotide as evidence for adaptation to ES loss

A comparison of the P. locustae ribosome to the yeast and V. necatrix structures (Fig 3) dem-

onstrates that microsporidia commonly reduce protein size and remove ESs during genome

compaction. Very few ESs remain, and those that do are significantly reduced in size (Fig 3B

and 3C). A previous analysis of microsporidian SSU rRNA revealed that microsporidia are

evolving towards rRNA reduction [9]. Early-branching species like Mitosporidium daphniae
contain longer and more numerous ESs, while recently branched species have eliminated these

sequences. V. necatrix has lost nearly all eukaryotic-specific ESs and several additional helices

of the universal core [9]. In contrast, rRNA removal has not progressed to the same extent in

P. locustae, and remnants of ancestral elements are still present. One such example is the func-

tionally important region surrounding the polypeptide exit tunnel in the LSU, where H7, H19,

and H24 share a high structural similarity with yeast and form a narrow channel (Figs 3 and

S4A). Contrastingly, V. necatrix has removed these elements and features a broad and open

tunnel exit. In the SSU, the 2 large ESs es6 and es3 are entirely absent in V. necatrix, while they

are still partially present in the P. locustae structure (Figs 3 and S4B). A section of P. locustae
es6 (es6C) again superimposes well with the yeast counterpart, whereas the short es6D and the

3 larger segments es6A, es6B, and es6E have been eliminated (S4B Fig). This indicates a line-

age-specific adaptation and reduction of rRNA in microsporidia.

A notable example of adaptation to ES loss can be seen in the P. locustae structure, where

the elimination of ESs may have resulted in poorly stabilized interactions between ribosomal

proteins (Fig 4). In yeast and many other eukaryotic ribosomes, a nucleotide from ES39

(A3186 in yeast) is inserted into a crevasse between uL6 and eL20 (Fig 4A and 4C). Although

the P. locustae rRNA does not contain this ES (Fig 4B), extra density between uL6 and eL20 is

consistent with a free nucleotide (Figs 4D and S2D). This suggests that ES39 served a vital role

in the stabilization of the protein–protein interface, and the nucleotide-binding site has been

retained despite the loss of ES39. The V. necatrix ribosome, on the other hand, does not con-

tain this nucleotide-binding site and is potentially demonstrative of a later evolutionary state

post-ES loss (Fig 3C). Consistently, only some of the earliest diverging microsporidian species,

like M. daphniae, encode ES39.

Although previous work has suggested that the loss of ESs necessitates a loss of protein

binding sites on the ribosome [22], our data indicate that this is not the case. In particular,

removal of the majority of the eL8 and eL27 ES binding sites does not lead, as proposed [22],

to the loss of these 2 proteins. Both proteins are bound to the P. locustae ribosome at high

occupancy (Fig 1), indicating that a small number of important and conserved interaction loci

are sufficient for binding. On the other hand, the ribosomal proteins eL38 and eL41 of the LSU

are absent in our P. locustae structure, as has been noted for V. necatrix [9], suggesting absence

in most microsporidian species. Finally, no density was visible for the microsporidian-specific

ribosomal protein msL1 in P. locustae.

Discussion

Microsporidia are divergent pathogens that infect essentially all animal species [25]. Despite

their broad host range and recognition as emerging pathogens of high priority [26], little is

known about the evolution of their molecular machinery, which has been shaped by extreme

PLOS BIOLOGY Structure of the Paranosema locustae ribosome in complex with Lso2

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000958 October 30, 2020 5 / 15

https://doi.org/10.1371/journal.pbio.3000958


genome compaction and an accelerated evolutionary rate [27]. Previous work has shown that

the reductive nature of these pathogens has resulted in one of the most compacted eukaryotic

cytosolic ribosomes [9]. The significant sequence divergence between microsporidian species

suggests variability in microsporidian adaptation to genome compaction and nutrient

Fig 3. Ribosomal RNA compaction in microsporidia. Comparative analysis of expansion segments and the absence thereof between

(A) S. cerevisiae (PDB 4V88), (B) P. locustae (PDB 6ZU5), and (C) V. necatrix (PDB 6RM3). (A–C) Four 90˚-related views of the

ribosome are shown (from top to bottom), with expansion segments colored and labeled in shades of yellow and orange (small subunit)

or shades of blue and green (large subunit).

https://doi.org/10.1371/journal.pbio.3000958.g003
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limitation. These differences can be visualized by comparing ribosome structure, composition,

and hibernation mechanisms.

While most eukaryotic ribosomes contain extensive ESs to stabilize ribosome structure and

facilitate interactions with various ribosome-associated proteins, a previous study on the

microsporidian ribosome of V. necatrix has shown that nearly all of these ESs have been elimi-

nated during genome compaction. In this study, we provide the first structural analysis of the

P. locustae ribosome and demonstrate that it occupies an intermediate state of rRNA reduction

between yeast and V. necatrix. One intriguing example of rRNA reduction is ES39, which is

lost in both V. necatrix and P. locustae. In yeast, ES39 contacts several ribosomal proteins in

the LSU by inserting a flipped-out base (A3186) into a binding site between uL6 and eL20.

Interestingly, the deletion of ES39 in yeast is known to perturb ribosome assembly and leads to

accumulation of assembly intermediates [20]. In the presented cryo-EM map, we observe clear

density for a free nucleotide that superimposes well with yeast A3186 (Figs 4 and S2D). It is

surprising that a nucleotide-binding site would be conserved after the ES was eliminated,

Fig 4. Reductive evolution of ES39 to a single structural nucleotide. A comparison of ES7 and ES39 between (A) S. cerevisiae
(PDB 4V88) and (B) P. locustae (PDB 6ZU5). The proteins eL20 (lime green) and uL6 (seafoam green) binding to ES39 are also

indicated. (C) An isolated, close-up view of the binding interface between eL20 and uL6, stabilized by A3186 (pink) from ES39 in

the S. cerevisiae ribosome (PDB 4V88). (D) A single nucleotide (pink) is bound to the protein–protein interface in P. locustae. The

inset depicts the cryo–electron microscopy map consistent with a single nucleotide between eL20 and uL6.

https://doi.org/10.1371/journal.pbio.3000958.g004
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especially since no nucleotide density was visible in the V. necatrix structure. One explanation

is that V. necatrix represents a later evolutionary state in rRNA compaction, and that alter-

ations in uL6 and eL20 have rendered the nucleotide-binding site unnecessary. In this case, the

bound nucleotide in P. locustae would be a relic evincing the comparatively recent evolution-

ary loss of ES39. Although the high conservation of this binding site in eukaryotes suggests an

important and conserved function, it is possible that this interaction is a result of proximity

and opportunity. Further studies, e.g., involving the deletion of this nucleotide from yeast

ES39, would be necessary to verify the functional significance of this interaction.

Interestingly, although the specific functional role of most ESs is largely unknown, ES27 has

been implicated in translation fidelity [21]. Removal of parts of ES27 in yeast results in

increased amino acid misincorporation during translation. The lack of ES27 in microsporidia

suggests that microsporidia either encode a separate means to ensure translational fidelity or

that they can tolerate a more error-prone system. Previous work supports the latter hypothesis,

and one notable study demonstrated that microsporidian translation is surprisingly editing-

deficient [28]. Although some misincorporation was compellingly linked to incorrect loading

by amino-acyl tRNA synthetases, we hypothesize that the elimination of ES27 contributes to

the low fidelity of microsporidian translation.

Translation is an energy-intensive process, requiring the hydrolysis of an estimated 30

nucleotides for the biosynthesis and polymerization of each amino acid [29]. Efficient shut-

down mechanisms are therefore needed during the ATP-deprived spore stage. Extra-ribo-

somal regulatory factors provide an efficient way to control translation in response to nutrient

availability. Ribosome hibernation factors (also known as ribosome dormancy factors [9] or

silencing factors [30]) are a class of proteins that bind to and inactivate ribosomes. They func-

tion via 3 main methods: (1) promotion of ribosome 100S dimers by joining SSUs in a head-

to-head fashion, as seen with the hibernation promoting factor (HPF) [31,32]; (2) inhibition of

70/80S ribosome formation, as with ribosomal silencing factor A (RsfA) [30]; or (3) stabiliza-

tion of 70S/80S ribosomes and blocking binding sites for various translational machinery, as

with interferon-related developmental regulator 2 (IFRD2) [7]. Recently discovered hiberna-

tion factors in V. necatrix function via the third method, where the conserved factor Mdf1

occupies the E-site tRNA binding site in the SSU while a species-specific factor, Mdf2, blocks

the polypeptide transferase center and exit tunnel [9]. In a similar fashion, Lso2 interferes with

key binding sites in the translation apparatus (Fig 2B and 2C).

In yeast, Lso2 has been identified as a protein required for translation recovery after glucose

starvation [8]. The purification of the P. locustae ribosome from mature dormant spores and

the high occupancy of Lso2 in our structure suggest that the hibernation function is important

in the extracellular spore stage of microsporidia. Similar to the other 2 identified microspori-

dian dormancy factors, Mdf1 and Mdf2 [9], the presence of Lso2 is incompatible with active

translation (Fig 2B and 2C). Despite their potentially similar function, Lso2 and Mdf1 are

encoded by both P. locustae and V. necatrix, suggesting different modes of ribosome hiberna-

tion are required. Based on an overlapping binding site on uL5, we speculate that only 1 of the

2 factors can bind at a time. It is also possible that Mdf1 or Lso2 is involved in removing the

other factor from dormant ribosomes, i.e., hibernation and recovery functions are performed

separately. Previous analyses indicate that mdf1 transcription is increased towards the end of

sporulation [9], suggesting Mdf1 activity is controlled by regulating protein concentration.

Although no similar data are available for Lso2 in microsporidia, other hibernation factors are

rapidly degraded upon return to nutrient-rich conditions [33,34], suggesting temporal regula-

tion is common. Alternatively, Lso2 interactions with ribosomes may be mediated by post-

translational methylations to the numerous lysine residues present throughout the protein, or

by phosphorylation of the relatively conserved serine and threonine residues at the N-terminal
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protein–rRNA binding interface (Figs 2 and S3). Further work is needed to segregate the func-

tional roles for various hibernation factors, and to identify the mechanisms by which hiberna-

tion factors are regulated. This cryo-EM structure serves as a model for the efficient shutdown

of a mechanistically complex macromolecular machine using a small protein, and sheds light

on the reductive characteristics of a unique and emerging pathogen.

Materials and methods

Cultivation of P. locustae and isolation of spores

The microsporidium P. locustae was propagated in a constant laboratory culture of the migra-

tory locust Locusta migratoria (Orthoptera: Acrididae). P. locustae spore suspensions were

mixed with small pieces of fresh maize leaves and fed to third instar locust nymphs at an infec-

tion ratio of 106 spores/nymph. Nymphs were starved for 24 hours before infection. After com-

plete consumption of contaminated forage, nymphs were maintained at 30˚C in wooden cages

with metal grids and provided constant light and fresh maize foliage. After 40–60 days, surviv-

ing insects were dissected. Swollen adipose tissue, tightly packed with spores, was homoge-

nized in a glass vial with a Teflon pestle. The homogenates were filtered using a syringe

plugged with cotton, centrifuged at 1,000g for 5–10 minutes, and washed with distilled water

[35,36]. The final spore pellet was stored at 4˚C prior to experiments.

Purification of the P. locustae ribosome

Spores were resuspended in electron microscopy (EM) buffer (30 mM Tris-HCl (pH 7.5), 25

mM KCl, 5 mM magnesium acetate, 1 mM DTT, 1 mM EDTA) in a 2-ml microcentrifuge

tube. To liberate ribosomes, 0.5 g of 0.5-mm zirconia beads was added to the tube, and the

spores were lysed by bead beating for 30 seconds. The lysed solution was centrifuged for 15

minutes at 10,000g to pellet the insoluble fraction. The supernatant was layered on top of a 1

M sucrose cushion, prepared in EM buffer. Ribosomes were then pelleted by centrifugation at

105,000g for 4 hours at 4˚C. After removing the supernatant, the pellet was resuspended in

20 μl of EM buffer. To determine purity and concentration, 5 μl was added to 95 μl of EM

buffer, and absorption was measured between 240 and 300 nm.

Cryo-EM grid preparation and data collection

Sample quality and homogeneity were analyzed by cryo-EM. A Quantifoil R 1.2/1.3 Cu 300

grid (Quantifoil Micro Tools, Prod. No. 658-300-CU) was glow-discharged for 30 seconds at

50 mA prior to the addition of a 3.5-μl ribosome sample (A260 4 mAU). Grids were then flash-

frozen in liquid ethane using an FEI Vitrobot (Thermo Fisher Scientific) set to 100% humidity,

4˚C, blot force of −5, waiting time of 1 second, and blot time of 4.5 seconds. Micrographs were

collected at the Umeå Core Facility for Electron Microscopy on a Titan Krios (Thermo Fisher

Scientific) operated at 300 kV, equipped with a Gatan K2 BioQuantum direct electron detec-

tor. EPU (Thermo Fisher Scientific) was used for the automated data collection of a total of

5,332 movies with 40 frames at a total dose of 28.6 e−/Å2, a pixel size of 1.041 Å, and a defocus

range between 0.7 and 2 μm (S1 Table).

Cryo-EM image processing

MotionCor2 [37] was used for the initial movie alignment, drift correction, and dose-weight-

ing. The contrast transfer function (CTF) was determined using CTFFIND-4.1.13 [38]. Micro-

graphs with poor CTF fits or drift were removed after manual inspection, resulting in a total of

5,274 micrographs. Particle picking was performed with the deep learning object detection
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system crYOLO [39] using a trained model based on 2,781 manually picked particles. A total

of 318,301 particles were initially picked. After manual inspection of all coordinates and

micrographs, 320,669 particles were extracted with a box size of 400 pixels (416 Å) and sub-

jected to an initial 2D classification to remove remaining picking contaminants. Well-resolved

2D class averages (314,213 particles) were used alongside a 60-Å lowpass-filtered initial cryoS-

PARC [40] model for refinement in RELION-3.1 [41].

Consensus refinement of all particles resulted in a map of 3.04 Å, which was further

improved by per-particle CTF refinement to an overall resolution of 2.73 Å. Despite well-

resolved density for Lso2, a focused classification with 3 classes suggests that approximately

92% of all particles are bound by this protein (S1B Fig). Weak density for an E-site tRNA was

observed, and conformational heterogeneity in the SSU-body and head region resulted in less

well-resolved SSU density. To further improve the density for the SSU-head region, a 3D clas-

sification focused on the SSU-head and E-site tRNA without image alignment was performed

using 3 classes (S1B Fig). Two of these classes displayed an improved overall resolution for the

SSU-head and tRNA site. Class 1 contained 37.7% (118,600 particles) and Class 2 contained

39.6% (124,947 particles) of the total particle mass. An overlay of both classes suggests that

they adopt different rotational states (S1B Fig). The particles of Class 2 were selected and

refined to an overall resolution of 2.93 Å (S2A Fig). To improve resolution of the distinct sub-

domains in State 2, a multibody refinement was performed focusing on the SSU-head, SSU-

body, and LSU regions separately. This resulted in resolutions of 3.28Å (SSU-head), 3.04Å
(SSU-body), and 2.83Å (LSU) (S2B Fig). The resulting focused refined maps and their half

maps were combined using PHENIX [42] to generate a map at 2.9 Å (S2B Fig).

Model building, refinement, and validation

At the start of this study, no complete and annotated genome was available for P. locustae.
Hence, to ensure complete coverage of all the relevant ribosomal protein and RNA sequences,

we used 3 available, but non-annotated, P. locustae genomes [43–45] to create a local database.

This database was used to identify P. locustae ribosomal protein and rRNA sequences (S2

Table). Yeast or V. necatrix protein and rRNA sequences were used with tblastn [46] or blastn

against the in-house genome database to identify the respective homologs in P. locustae. The

high-resolution crystal structure of the yeast ribosome (PDB 4V88 [19]) was used as initial

template for modeling the P. locustae ribosome in Coot [47]. Lso2 was built de novo in Coot.

In the overall structure, a small number of surface-exposed cysteines showed additional den-

sity close to the thiol groups, indicating a low level of oxidation. Model refinement was per-

formed against the combined map of State 2 (2.9 Å) with PHENIX [42] using phenix.

real_space_refine (version 1.14–3260) and manually defined zinc coordination and rRNA

restraints. Model validation was performed according to [48]. All atomic coordinates were

randomly displaced by 0.5 Å, followed by refinement against half map 1. The Fourier shell cor-

relation coefficient of the resulting refined model and half map 1 or half map 2 was calculated

to evaluate the model for overfitting. Model statistics are presented in S1 Table, and model

composition and sequences are listed in S2 Table. While this paper was in preparation, the

cryo-EM structures of Lso2 bound to the yeast ribosome [49] and CCDC124 bound to the

human ribosome [49,50] were published. These studies confirm the overall structural fold and

binding mode of Lso2 described here.

Map and model visualization

Structure analysis and figure preparation were performed using PyMOL (Schrödinger) [51]

and UCSF ChimeraX [52].
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Supporting information

S1 Fig. Cryo-EM data collection and processing scheme. (A) Representative cryo-EM micro-

graph of the microsporidian ribosome. (B) The 5,332 collected micrographs were manually

inspected to remove those with drift, poor CTF fits, or low-quality ice, resulting in a total of

5,274 micrographs. Particles were picked using crYOLO [39] and subjected to 1 round of 2D

classification (representative 2D class averages shown) in RELION-3.1 [41] to remove picking

contaminations. The initial model was generated using cryoSPARC [40]. A consensus refine-

ment yielded a map at 3.0-Å resolution, which was improved further by per-particle CTF

refinement to a resolution of 2.73 Å. To isolate the most populated conformation of the

dynamic SSU-head region, a focused 3D classification was performed without image align-

ment. The resulting 3 classes of the SSU-head domain (different shades of yellow) are shown

superimposed with the full consensus refined ribosome. Lso2 is highlighted in red. The class

with the best resolved SSU-head, Class 2, contained additional density for an E-site tRNA (sky

blue), and was refined to an overall resolution of 2.93 Å. Multibody refinement yielded maps

with resolutions of 3.28 Å for the SSU-head (EMD-11437-additional map 1), 3.04 Å for the

SSU-body (EMD-11437-additional map 2), and 2.83 Å for the LSU (EMD-11437-additional

map 3). These maps were combined using PHENIX combine-focused-maps (EMD-11437).
�The inset depicts a superposition of Class 1 and 2 to visualize the 2 conformational states of

the SSU-head. øTo estimate the percentage of ribosomes bound to Lso2, a mask enclosing this

region was used for a 3D classification without image alignment. Class 1 shows clear density

for Lso2, suggesting that 91.8% of all ribosomes are bound by this factor.

(TIF)

S2 Fig. Global and local resolution estimation, model validation, and visualization of the

model-density fit. (A–C) Fourier shell correlation (FSC) curves of the consensus refined state

2 (A), the multibody refined maps and the combined final volume (B), and map-to-model

cross-validation (C). The thin dashed line indicates an FSC value at 0.143 or 0.5. Curves were

obtained from RELION-3.1 [41] (A and B) or EMAN2 [53] (C). (D) The final focused refined

map (EMD-11437) is shown (left) next to a core-region cross-section (middle). Densities for

eL20, uL6, and the bound nucleotide (highlighted in lime) and Lso2 (right) are displayed in

isolation. All maps are colored according to local resolution. Local resolution was estimated

using RELION-3.1 and visualized in UCSF ChimeraX [52]. (E) Selected representative cryo-

EM densities superimposed with the corresponding models (PDB 6ZU5), colored in blue

(LSU), yellow (SSU), or red (Lso2).

(TIF)

S3 Fig. Conservation of Lso2 in eukaryotes and its ribosome interaction surfaces. (A) A

multiple sequence alignment of Lso2 from microsporidia and selected eukaryotes. The related

S. cerevisae Lso1 is also included. The C-terminal ends of M. daphniae and Homo sapiens have

been truncated. The domain architecture of Lso2 is presented on the top. (B) Lso2 shown in

isolation with side-chains as spheres, colored according to conservation from white (variable)

to red (conserved). The conservation was calculated with Homolmapper [54], using the micro-

sporidian sequences shown in (A). (C) Lso2–ribosome interaction interfaces (shades of green)

were obtained using EBI PISA [55]. (B and C) Molecular models are shown from PDB 6ZU5.

(TIF)

S4 Fig. Stepwise reduction of rRNA elements in microsporidia. (A) LSU region around the

polypeptide exit tunnel, shown for S. cerevisiae (PDB 4V88 [19]), P. locustae (PDB 6ZU5,

solved here), and V. necatrix (PDB 6RM3 [9]). Eukaryotic ESs and rRNA helices diminish

from left to right. Peptide exit tunnels are denoted by a red square. (B) Reduction of the SSU
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ESs es6 and es3. P. locustae again represents an intermediate state in this reduction.

(TIF)

S1 Table. Cryo-EM data collection, refinement, and model statistics.

(PDF)

S2 Table. Model composition and sequence information. Bolded and underlined sequences

were modeled with side-chains while green regions were trimmed but still contain side-chain

information. Sections indicated in yellow were modeled with poly-alanine structural elements,

and the ubiquitin moiety of eL40 is indicated in blue.

(PDF)
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