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Abstract

The ongoing digital revolution in the age of big data is opening new research opportunities.

Culturomics and iEcology, two emerging research areas based on the analysis of online

data resources, can provide novel scientific insights and inform conservation and manage-

ment efforts. To date, culturomics and iEcology have been applied primarily in the terrestrial

realm. Here, we advocate for expanding such applications to the aquatic realm by providing

a brief overview of these new approaches and outlining key areas in which culturomics and

iEcology are likely to have the highest impact, including the management of protected

areas; fisheries; flagship species identification; detection and distribution of threatened,

rare, and alien species; assessment of ecosystem status and anthropogenic impacts; and

social impact assessment. When deployed in the right context with awareness of potential

biases, culturomics and iEcology are ripe for rapid development as low-cost research
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approaches based on data available from digital sources, with increasingly diverse applica-

tions for aquatic ecosystems.

Introduction

The digital revolution provides unique opportunities to gain additional or complementary

knowledge on the environment and related human values, attitudes, norms, preferences, and

behaviors. Culturomics and iEcology are emerging research fields that mine digital data gener-

ated by people as part of their daily lives to develop new insights with low sampling costs and

high spatiotemporal breadth (S1 and S2 Figs) [1,2]. The methods of culturomics, which focuses

on the study of human culture through the quantitative analysis of large bodies of digital data

[3], are being used to study contemporary problems in conservation [1] through the prism of

human–nature interactions. Such applications include the study of societal interest in different

organisms and ecosystem services; attitudes of stakeholders and the general public towards

environmental impacts of development; human behavior concerning ongoing management

and conservation efforts; and the distribution, intensity, and spatiotemporal dynamics of

anthropogenic threats and resource uses [4–13].

iEcology studies ecological patterns and processes using data generated for other purposes

and stored digitally [2]. It uses similar data sources and analytical tools as culturomics but

extracts information that addresses broad ecological questions such as species occurrences,

distributional range shifts, population dynamics, life history, ecological status, and monitoring

of target taxa such as alien, rare, or threatened species (S1 Table) [14,15].

Scientists working on the terrestrial realm have harnessed the potential of culturomics and

iEcology applications, but their use in aquatic realms is far more limited and faces greater chal-

lenges. Here, we advocate for a wider application of these new digital approaches to the science

and conservation of freshwater and marine environments and those who depend on them, dis-

cuss the relevance and potential of such applications, present associated challenges and limita-

tions, and highlight key areas in which these new approaches may have the most impact.

Making a case for aquatic culturomics and iEcology

The aquatic environment comprises both marine and freshwater ecosystems, which together

cover approximately 72% of the Earth’s surface. These ecosystems provide essential services to

people, with the majority of human populations living along coasts and within river basins,

and thus are widely recognized as conservation priorities [16–18]. Indeed, freshwater and

marine coastal habitats are severely threatened by the synergistic effects of anthropogenic pres-

sures such as habitat loss, damming, invasive alien species, water extraction, pollution, and

unsustainable harvest [19–23]. As a result, aquatic species face disproportionately higher

extinction risks than terrestrial species [24,25], which impacts the well-being of communities

that depend on aquatic ecosystems.

Current levels of research, monitoring, and action remain insufficient to cope with the

impacts that aquatic habitats face and their consequent effects on people. Research in aquatic

environments is hindered by limited accessibility and low species detectability [26,27]. Impor-

tantly, environmental impacts in aquatic environments frequently occur faster than they can

be actively monitored and understood. Furthermore, conducting high-quality social science

research to understand human values, attitudes, behaviors, and knowledge towards aquatic
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The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: API, Application Programming

Interface; CBD, Convention on Biological Diversity;

ICPDR, International Commission for the

Protection of the Danube River; IUCN, International

Union for Conservation of Nature; SDG,

Sustainable Developmental Goal; WWF, World

Wide Fund for Nature.

https://doi.org/10.1371/journal.pbio.3000935
https://www.government-mv.de/Mecklenburg%E2%80%93Vorpommern
https://www.government-mv.de/Mecklenburg%E2%80%93Vorpommern
https://www.bmbf.de
https://www.bmbf.de
https://gacr.cz
https://www.isf.org.il
https://www.isf.org.il
https://www.fct.pt
https://www.forskningsradet.no
https://www.forskningsradet.no
http://www.ciencia.gob.es
http://www.ciencia.gob.es
https://www.sshrc-crsh.gc.ca
https://www.sshrc-crsh.gc.ca
https://www.dal.ca/faculty/gradstudies/funding/appprocres/scholarshiprefs/nsgs.html
https://www.dal.ca/faculty/gradstudies/funding/appprocres/scholarshiprefs/nsgs.html
https://www.dal.ca/faculty/gradstudies/funding/appprocres/scholarshiprefs/nsgs.html
https://starfos.tacr.cz
https://starfos.tacr.cz


environments is time-consuming and often costly while also lagging behind fast ecological

changes or happening at scales that do not match local ecological change [28,29].

Culturomics and iEcology can provide valuable contributions to aquatic sciences and con-

servation as both complementary and unique sources of information. The chronic data and

research deficits of aquatic systems [17,30] call for the development of novel research methods.

Because culturomics and iEcology take advantage of available data, they are also far less costly

than field sampling and social surveys.

Yet applying culturomics and iEcology in aquatic environments faces challenges. Online data

sources dedicated to aquatic environments tend to be considerably more limited compared to

terrestrial sites. Moreover, human–nature interactions are especially difficult to document in

these ecosystems with digital technology (often requiring more specialized equipment—for

example, waterproof cameras) and have uneven spatial coverage, with scarce data from areas far-

ther from the shore and underwater. Nevertheless, these approaches still represent a rich source

of information, and their potential should improve as technological advances such as underwater

wireless connection provide new opportunities to document our interactions underwater [31].

Below, we present promising areas of application of culturomics and iEcology, focusing on

those that are particularly relevant for aquatic ecosystems, including the detection and distri-

bution of threatened, rare, and alien species; ecosystem status and anthropogenic impacts;

wildlife and fisheries management; flagship species identification; protected areas manage-

ment; and social impact assessment for development proposals. We further provide examples

from published works (S1 Table).

Detection, mapping, and monitoring of threatened, rare, and alien species

Compared to their terrestrial counterparts, many aquatic species are chronically under-

sampled. Since marine and freshwater surveys are comparatively expensive, harnessing alter-

native sources of data on species distributions is critical. One of the most common ecological

applications of online digital data is to explore species occurrences and distribution [2]. The

ever-expanding stream of user-generated content (including geospatially coded photographs,

videos, and audio recordings) in online platforms such as Facebook, Instagram, YouTube, or

news media can be used to identify and detect species presence and map their distributions,

population densities, and group sizes to monitor their spatiotemporal dynamics. Such sources

could be particularly relevant for identifying new or remnant populations of rare or threatened

species, as well as for early detection and monitoring of alien species. Recordings can also pro-

vide data on both species’ presences and absences. Such methods have so far been applied to

monitor various aquatic mammals, including cetaceans in the Mediterranean Sea [32,33],

Hawaiian monk seals (Neomonachus schauinslandi) in the Hawaiian Islands [34], and Eurasian

otters (Lutra lutra) in South Korea [35]. Online media can also be used to study spatiotemporal

intraspecific phenotypic variation [36], as well as species co-occurrence patterns. The immi-

nent arrival of automatic species identification following progress in machine learning meth-

ods [37–39] and growing taxonomic reference image databases [40] will further increase the

utility of such approaches. The application of marine and freshwater ecoacoustics (i.e., the

study of soundscapes and the relationship between sound and the environment) [41,42] to

video and audio documents made available online could also further enhance these capabili-

ties. While most such recordings would not be useful as data sources, the sheer number of vid-

eos uploaded daily will ensure that even a very small proportion of usable documents will

result in large data sets suitable for analysis. Soundscape assessment approaches have been

already demonstrated in the terrestrial realm [43]. Digital sources could also be mined for past

occurrences as well as used for monitoring species in real time. Nevertheless, the availability of
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spatial digital data is strongly driven by species characteristics, including charismatic traits,

body size, conspicuousness, proximity to humans, and socioeconomic value, restricting most

studies to vertebrates. One approach that could greatly facilitate monitoring of noncharismatic

and less conspicuous elements of biodiversity would be the development of automated species

recognition to analyze background information in digital data, such as species captured unin-

tentionally in the background of photos and videos. Such monitoring methods could also

prove more comprehensive than monitoring based on targeted videos and images (i.e., in

which the species was filmed intentionally) since they entail fewer potential biases due to

human agency (see below) and might be especially relevant for monitoring sessile species, e.g.,

vegetation [44].

Ecosystem status and impacts

Digital approaches can complement conventional methods to detect and monitor changes in

ecological community and population structure, phenology, and impacts of extreme events

and climate change [15,44,45]. They can also be used as early warning systems for ecosystem

phase shifts or emergent impacts [46]. For example, analyzing Google Images revealed a likely

climate-change–driven phenological shift in the breeding periods of Japanese dace (Triblodon
hakonensis) [47] and identified the prevalence and intensity of parasite-induced coloration

phenomenon in Caribbean reef fish [48]. Digital photo analysis was also used to identify the

extent of anthropogenic impacts and degradation of coral reefs from central Pacific atolls and

the Caribbean Sea [4]. iEcology cannot replace standard field studies, but its broad geographi-

cal reach could make it an effective tool for preliminary screening and identification of priority

areas to focus research effort.

Wildlife and fisheries management

Culturomics and iEcology can help wildlife and fisheries managers monitor distributions, com-

positions, and dynamics of communities; fishing or hunting practices; fishers’ or hunters’ activi-

ties and behaviors; fisheries or managed harvest sustainability; and wildlife trade. Several studies

have inferred fish population trends and overfishing from temporal trends in fish size and com-

position using digitally stored data such as photographs and news articles [14,49,50]. Further-

more, historical data from digitized texts, photographs, or ship logs can provide insights into

the distribution or abundance of species at times when scientific sampling data are limited [51].

Culturomics can shed light on the behavior and preferences of fishers [52], for example, by

assessing regional characteristics of recreational fisheries based on YouTube videos or discus-

sion forums (Fig 1A) [7,9,12] or by analyzing internet search frequency to explore global trends

in fishing interest and seasonality [5]. These approaches can also be used to monitor the effec-

tiveness of fisheries management initiatives by tracking attitudes and compliance of fishers

before, during, and after implementation of regulations and to anticipate reactions.

Flagship umbrella species

Flagship and umbrella species (or the integration of both concepts as “flagship umbrella spe-

cies”) [53], respectively, represent conservation surrogate species with a potential to be used as

the focus of a broader conservation marketing campaign [54] and species whose conservation

confers a protective umbrella to numerous co-occurring species [55]. Both concepts are still

underutilized in aquatic environments (with the exception of some marine mammals and sea

turtles) [56,57] because of the lower accessibility and visibility of aquatic species and ecosys-

tems. Culturomics and iEcology can be valuable approaches to identify flagship and umbrella

species and monitor their public uptake [1]. Culturomics can help identify promising flagship
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species based on societal interest across many candidate species (Fig 1B) [58,59], while iEcol-

ogy can help identify potential umbrella species by mapping their distribution and overlaps

with key habitats and co-occurring species. Culturomics can also help gauge the effects of pub-

lic awareness campaigns and behavior change interventions that employ flagship species [60]

and help assess and adapt social marketing strategies. Examples in which these concepts have

been already applied in the aquatic realm show that they can work well in practice. For exam-

ple, species such as salmonids, sturgeons, and freshwater dolphins have been promoted as

freshwater flagships by the International Union for Conservation of Nature (IUCN), World

Wide Fund for Nature (WWF), and International Commission for the Protection of the Dan-

ube River (ICPDR) [57].

Management of protected areas and landscapes

Culturomics can provide valuable and cost-effective information for managing protected

areas, including data on tourism pressures, use of different habitats for recreation, cultural

Fig 1. Examples of aquatic culturomics and iEcology studies. (A) Social engagement of marine recreational anglers and spearfishers targeting common dentex

(Dentex dentex), an iconic species for Mediterranean fisheries, based on videos posted on YouTube [12]; upper photo—common dentex, lower photo—spearfisher. (B)

Potential aquatic flagship species identified based on their popularity (relative internet search frequency) [59]; presented are top-ranked marine (killer whale, Orcinus
orca, and great hammerhead, Sphyrna mokarran) and freshwater species (hippopotamus, Hippopotamus amphibius, and platypus, Ornithorhynchus anatinus). (C)

Mapping of cultural ecosystem service hotspots in a marine protected area, based on social media photographs [11]. (D) Conceptual landscape perception map, based on

statistical relationships between activities, values, and features coded from landscape images and captions on Instagram, from the proposed headpond area of the now-

approved Site C dam, Peace River, British Columbia, Canada [6,68]. See the supporting information (S1 Text) for image attributions.

https://doi.org/10.1371/journal.pbio.3000935.g001
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ecosystem services, and societal awareness, attitudes, and sentiments [61,62]. Obtained

insights can be critical for developing management and marketing programs, especially in pro-

tected areas that have no monitoring systems in place [61]. Image-sharing platforms such as

Flickr and Instagram provide information on tourist preferences for nature-based experiences

in protected areas [63]. Many protected areas are exposed to high tourist visitation frequency,

which makes them especially suitable for developing monitoring programs based on culturo-

mics approaches [61,64]. These have been used to assess cultural ecosystem services, as well as

tourism preferences and intensity, in Ramsar wetlands in South Korea [10] and India [65] and

in marine protected areas such as Brazil’s Costa dos Corais (Fig 1C) [11] or Australia’s Great

Barrier Reef [66]. Such studies mostly map geocoded images, which can be augmented with

automated facial expression analyses or sentiment analyses of captions [10,11,13,65,66] to pro-

vide better insight into tourist attitudes and preferences.

Social impact assessment

Social media and other digital data sources can be effectively utilized to assess the social

impacts of construction or infrastructure development [6], to evaluate activities and values

associated with landscape features and cultural ecosystem services, and to help anticipate the

expected impacts of planned projects [67,68]. Such projects include hydroelectric dams, off-

shore wind parks, oil platforms, gravel extraction, channelization, embankments, and develop-

ment of marinas, ports, and touristic resorts. These approaches have already been used for

social impact assessment of planned and existing hydroelectric dams on the Peace and St. John

Rivers in Canada using Instagram data (Fig 1D) [67,68], as well as the Three Gorges Dam in

China using sentiment analysis of news articles, forums, and blogs [69]. While they are yet to

be incorporated in environmental decision-making, these methods have a great potential to

become relevant part of this process, especially for large-scale projects and impacts, for which

traditional social impact assessment methods may be impractical.

Caveats and challenges in culturomics and iEcology in aquatic

environments

Ensuring reliable results when using digital data for the purposes described here faces impor-

tant caveats and challenges. These issues are linked to both data generation and data extraction

and encompass sociocultural aspects, accessibility, geographic factors, data sources, systematic

differences between users and nonusers of digital data, and ethical considerations (Fig 2).

Digital data availability and representativeness can be affected by various cultural, political,

and socioeconomic factors, as well as demographic characteristics such as age, gender, and

education. Furthermore, biases may also arise from different cultural norms, taboos, and mis-

conceptions, as well as differences in internet and online platform usage motivations and hab-

its, and their changes over time [70,71]. Social media users often represent a specific stratum

of the population, and data may be biased towards more active users and specific social groups

[61,71]. For example, recreational fishers posting about their catch and expressing their opin-

ion may deviate from a random sample [72], and their featured species may be biased towards

larger and more impressive species and individuals [12]. Furthermore, rural, traditional, and

indigenous societies are usually underrepresented in digital data, and data generated by tour-

ism can interfere with assessments of local population attitudes and behaviors [1]. Another

prevalent challenge is that the way people represent themselves on social media is often far

removed from reality, and their interactions with others are filtered to make their representa-

tion appropriate to the intended audiences [61,73]. Digital data are also characterized by a

range of linguistic challenges, including language barriers, semantic complexity, linguistic
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diversity and instability, and challenges related to interpretations, translations, and language

norms [1,70,74].

The highly uneven spatial coverage of the internet and its users is exacerbated in aquatic

realms. Digital data are also much sparser, with coverage tending to decrease with distance

from shore and water depth and concentrating along transportation routes, in areas with

higher population density, and in recreation areas.

Fig 2. Overview of challenges and biases associated with conservation culturomics and iEcology research, divided into 5 groups: sociocultural aspects,

accessibility issues, geographic factors, issues related to data sources, and ethical issues. It should be noted that some of the listed issues also represent key

research subjects for the field of culturomics.

https://doi.org/10.1371/journal.pbio.3000935.g002
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Digital data are also limited temporally. While there are increasing efforts to digitize past

content, in many cases, the earliest available data are limited. Furthermore, data access and use

are hindered by nontransparent and dynamic data-access algorithms (such as Application Pro-

gramming Interfaces [APIs]), often with limited access because of proprietary constraints,

data sharing restrictions and firewalls, and limited replicability [1,61,70,75]. Online data are

also characterized by temporal decay (i.e., webpage removal, data loss and deletion) and

uneven archiving, as well as by the presence of unreliable data (i.e., incorrect spatial and tem-

poral information, nonexpert species identifications, false information, etc.).

The fields of culturomics and iEcology are still developing established frameworks and pro-

tocols of good practice to tackle privacy issues and ethical use [71,76]. Publicly available digital

data, especially those shared on social media, often involve sensitive personal information that

requires establishing a set of guidelines to ensure ethical web-scraping practices [76]. Further-

more, digital data can reveal sensitive information on rare and threatened species, such as pre-

cise locations and other attributes that could facilitate poaching and unsustainable harvesting

[2].

In general, digital data are nonrandom in extent and depth and vary among users, regions,

cultures, time frames, and taxonomic groups [2,75] and require calibration and validation to

quantify such biases. Digital data should therefore be used with due caution in the right study

context while controlling for biases. For example, extrapolating compliance or user perspec-

tives on an issue expressed online will unlikely scale to the entire population without correct-

ing for sample bias. Nonetheless, questions related to local communities and particular societal

groups can be addressed without making population-level inferences. Some of the biases

related to digital data should diminish over time as internet penetration improves. Inferences

obtained from digital data can be made more robust by simultaneous use and cross-validation

of multiple digital data sources such as different search engines, social media platforms, online

news, and digital encyclopedias [70,77]. Additionally, whenever possible, digital data should

be validated through ground-truthing and triangulation with other data sources such as sys-

tematic surveys, remote sensing, and citizen science [2,78]. Finally, culturomics and iEcology

methods may be also useful to identify new problems, patterns, and hypotheses for more con-

ventional studies in which biases can be better controlled.

Conclusions

Culturomics, iEcology, and other emerging digital approaches have great potential to produce

novel and valuable insights into the sustainable management and conservation of ecosystems

and strengthen ongoing research efforts. We demonstrated the potential of these new

approaches and advocated for expanding it into aquatic realms, where they are likely to

increase quickly as new tools are developed and their limitations and biases are better under-

stood and addressed (Fig 2). Emerging technologies such as automated web crawling and data

processing, machine learning, automatic species identification, apps, and ecoacoustics could

further enhance their utility and uptake by the scientific and conservation communities [2].

Ultimately, we envision the potential for a global digital observatory of Earth, an online plat-

form established for continuous collection and processing of key digital data from a wide vari-

ety of sources that could provide near real-time information on ecosystem change and

human–nature interactions.

With the right tools and expertise, digital data represent a rich and unique resource for

both aquatic and terrestrial research. They can also contribute to monitoring progress towards

the Sustainable Development Goals (SDGs) and the Post-2020 Biodiversity Goals of the Con-

vention on Biological Diversity (CBD) [79]. For example, they can contribute to improved
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knowledge and the development of research capacities in aquatic research (SDG target 14.A)

and can support ongoing research and monitoring efforts related to the management of

aquatic ecosystems (SDG 14.2, 14.5 and 15.1, CBD #1 and 2), biological invasions (SDG 15.8,

CBD #3), climate change (SDG 13.3, CBD #6), wildlife and fishery management and trade

(SDG 14.4 and 15.7, CBD #5), biodiversity protection (SDG 15.5, CBD #18), and sustainable

tourism (SDG 12.B). Moreover, they can also support efforts towards human-oriented SDGs,

such as those related to the impacts of poor source water quality (SDG 6) [80]. We call upon

the scientific community to explore and engage with culturomics and iEcology approaches as

well as to actively seek collaborations across disciplines, especially with computer and social

scientists, to provide opportunities for the most effective and innovative transdisciplinary anal-

yses of the pressing issues in the conservation of biodiversity [2,81,82].

Supporting information

S1 Fig. Conceptual diagram with key differences among culturomics, iEcology, and other

related approaches such as citizen science and social surveys. Differences are based on the

object of study (human–nature interactions or nature itself) and the type of data generation

(passive or active). Data sets generated by citizen science, social surveys, and other approaches

can also represent data sources for iEcology and culturomics, as indicated by arrows. Drawings

illustrate some applications of culturomics and iEcology for aquatic research: 1) fisheries man-

agement; 2) social impact assessment; 3) detection, mapping, and monitoring of threatened,

rare, and alien species; 4) ecosystem status and anthropogenic impacts; and 5) identification of

aquatic flagship and umbrella species.

(TIF)

S2 Fig. Conceptual workflow of aquatic culturomics and iEcology research. The figure high-

lights how data are obtained, processed, and analyzed to gain insights on aquatic ecosystems

using iEcology or culturomics approaches. The shaded-out region on the left of the figure rep-

resents the more traditional aquatic research avenues that lie outside the scope of this manu-

script. However, once their underlying data are digitized and shared, they too can contribute

to iEcology and culturomics explorations.

(TIF)

S1 Table. Applications of culturomics and iEcology in aquatic research. A compilation of

available examples of culturomics and iEcology studies applied in aquatic research, with asso-

ciated information on studied regions and countries, data sources used, and research topics.

(XLS)

S1 Text. Image attributions for Fig 1.

(DOC)
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