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Abstract 
The wide availability, low radiation dose and short acquisition time of Cone- 
Beam CT (CBCT) scans make them an attractive source of data for compiling 
databases of anatomical structures. However CBCT has higher noise and low-
er contrast than helical slice CT, which makes segmentation more challenging 
and the optimal methods are not yet known. This paper evaluates several me-
thods of segmenting airway geometries (nares, nasal cavities and pharynx) 
from typical dental quality head and neck CBCT data. The nasal cavity has 
narrow and intricate passages and is separated from the paranasal sinuses by 
thin walls, making it is susceptible to either over- or under-segmentation. The 
upper airway was split into two: the nasal cavity and the pharyngeal region 
(nasopharynx to larynx). Each part was segmented using global thresholding, 
multi-step level-set, and region competition methods (the latter using thre-
sholding, clustering and classification initialisation and edge attraction tech-
niques). The segmented 3D surfaces were evaluated against a reference ma-
nual segmentation using distance-, overlap- and volume-based metrics. Glob-
al thresholding, multi-step level-set, and region competition all gave satisfac-
tory results for the lower part of the airway (nasopharynx to larynx). Edge at-
traction failed completely. A semi-automatic region-growing segmentation 
with multi-thresholding (or classification) initialization offered the best qual-
ity segmentation. With some minimal manual editing, it resulted in an accu-
rate upper airway model, as judged by the similarity and volumetric indices, 
while being the least time consuming of the semi-automatic methods, and re-
lying the least on the operator’s expertise. 
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Pharyngeal Airway 

 

1. Introduction 

Respiratory illness affects a substantial number of people worldwide with the top 
five respiratory diseases accounting for 17.4% of all deaths and 13.3% of all Dis-
ability-Adjusted Life Years (DALYs) [1]. Breathing therapy devices are fre-
quently used to treat breathing disorders such as chronic obstructive pulmonary 
disease (COPD) and obstructive sleep apnoea (OSA), and to assist premature 
babies as their lungs develop. Breathing therapies are also frequently adminis-
tered to patients in critical or intensive care wards. The effectiveness of the 
therapy depends on the design of the device, the inspirational demand, face 
shape (mask or cannula fit) and airway shape (which determines flow resistance 
and gas mixing) [2]. Airway shape, the nasal cavity in particular, shows signifi-
cant interpersonal variation [3] [4] [5] [6]. Knowledge of this variation is im-
portant for the design of better therapeutic devices, and requires segmentation of 
the airway from many individual scans. 

In vivo measurements of pressure or CO2 clearance are difficult due to the in-
accessibility of the airway interior, and expensive to conduct with enough par-
ticipants to be representative of the population. However gas mixing (CO2 wa-
shout), flow and resistance can be studied using computational fluid dynamics 
(CFD) [7]-[18] or experimental methods using cast or 3D printed model airways 
[8] [19]-[24]. Accurate physical airway models are essential to these approaches. 
To make the models, or CFD meshes, shape data for both patient-specific and 
population-averaged airways are needed. Population-averaged airways have 
been generated by superimposing aligned individual patient-specific airway 
geometries [25], by averaging images of the airways slice-by-slice [26], by using 
used thin-plate spline deformations [27], or by applying a Fourier descriptor 
method to decompose airway shapes into morphological feature descriptors 
which can be averaged [12] [28]. Whichever method is followed, to generate 
airways representative of the population requires the segmentation of large 
numbers of scans, which is time consuming if done manually. 

1.1. Data Sources for Human Upper Airway Studies 

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) scans are 
valuable sources of anatomically correct 3D airway shape data. Segmentation is 
the process of extracting the structure of interest by identifying those image vox-
els which belong to the airway spaces based on their intensity, or patterns of in-
tensity in a region of interest. Accurate segmentation depends on image quality 
and contrast, which vary with imaging modality.  

MRI data offers the best tissue/air contrast, but movement artefacts may be 
present due to the long image acquisition time. In the upper airway, this partic-
ularly affects the tongue and soft palate. 
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Conventional helical multislice CT data is widely used as a source of accurate 
anatomical 3D models due to good spatial and contrast resolution, and limited 
movement artefacts, due to the short duration of the scan. It suffers from poor 
soft tissue differentiation, and streak and beam-hardening artefacts (dark streaks 
in the image between two high attenuation objects, i.e. metal, bone, dental fil-
lings, or along the long axis of a single high attenuation object)which complicate 
the segmentation process, particularly around the oropharynx region [29] [30]. 
Each slice (2D image) is reconstructed independently in 2D and the slices are 
stacked to obtain a 3D reconstruction. The spatial resolution is usually deter-
mined by the distance between slices. 

Cone-Beam CT or CBCT is a type of CT imaging widely used for various 
applications in dentistry, and hence is an abundant source of anatomical cra-
niofacial image data. CBCT scanners have grown in popularity in clinics due 
to their lower cost and lower radiation dose compared to conventional CT 
[31]. A cone-shaped X-ray beam directed through the middle of the field of 
view onto a planar area detector [32] [33]. A complete set of CBCT images 
(from 150 to 600) is acquired in a single X-ray tube rotation, in a complete or 
partial arc. This reduces the scanning duration, movement artefacts and radia-
tion exposure compared to conventional CT. Volumetric reconstruction is 
performed on acomplete set of raw 2D projected images. This allows for 
roughly cubic voxels i.e. equal spatial resolution in all directions. The spatial 
resolution is primarily dependant on the detector pixel size (typically 0.09 to 
0.4 mm), and the spatial resolution is usually greater than conventional CT. 
The quality of the reconstructed shape data in CBCT is affected by the number 
of projections taken. A greater number of projections takes longer and in-
creases radiation dose, but improves spatial resolution, contrast, and sig-
nal-to-noise ratio, and diminishes beam-hardening artefacts.  

The disadvantage of CBCT is the limited image quality due to noise and con-
trast resolution caused by the detection of a large amount of scattered radiation 
(Figure 1). Of note is the poorer contrast between air and tissue in the CBCT. 
This is due to a large volume being irradiated during each projected image ac-
quisition and, hence, a large fraction of the beam intensity is attenuated. Some of 
the scattered radiation falls on the detector, creating background noise that de-
grades contrast. Hence different areas in the image space may possess different  
 

 
Figure 1. Typical CBCT vs. CT image. 
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image intensities despite having identical densities in the object space, resulting 
in image in homogeneity. This complicates the segmentation process, limiting 
the value of simple techniques like global thresholding and requiring more so-
phisticated methods. 

In conventional CT reconstructions, the voxel grey scale intensity is measured 
in Hounsfield Units (HUs or CT number) which are uniquely related to the den-
sity of the tissue. In CBCT reconstructions, this relationship is not unique: the 
grey-scale value of each voxel depends on its location in the imaged volume, and 
thus voxels of similar tissue density but in different locations may have different 
image values [34] [35] [36]. Accurate absolute density measurement is not poss-
ible. There is no standardized system for grey scale value scaling in different 
CBCT systems. These are arbitrary assigned which complicates scan-to-scan 
comparison and the universality of the image segmentation approach [37] [38]. 

1.2. Upper Airway Segmentation from CBCT Images 

Upper airway segmentation from CBCT images has received little attention in 
the literature with the majority of studies limited to sub-sections of the airway 
and using scans wit contrast and resolution comparable to conventional CT. The 
purpose of the current work is to identify segmentation techniques suitable for 
extracting the whole airway from dental-quality CBCT data. 

Global thresholding is the simplest segmentation technique. All regions below 
a chosen pixel intensity (threshold) are identified as air, and all above as tissue. 
The key decision to be made by the operator or algorithm is the value of the 
threshold intensity. The Otsu algorithm [39] or variants are often used. Global 
thresholding performs satisfactorily for many segmentation tasks in convention-
al CT and MRI images [40]. However the nasal cavity, having a number of intri-
cate and narrow passages and adjacent paranasal sinuses, is susceptible to either 
under-segmentation (real boundaries between tissue and air are ignored by the 
segmentation algorithm, and distinct air-filled cavities are merged into one) or 
over-segmentation (the algorithm returns spurious boundaries where anatomi-
cally none exist). Manual segmentation editing, when a trained operator reviews 
the segmentation result slice-by-slice selecting or deselecting pixels mis-assigned 
to either air or tissue, is often needed to accurately capture the nasal cavity geo-
metry. 

To reduce operator workload, Shi et al. [41] [42] proposed an automatic seg-
mentation method for upper airway CBCT images, based on global image thre-
sholding. The threshold value was defined as the one that represented the high-
est intensity of the region of interest. The segmentation area was limited to the 
oropharyngeal airway region and maxillary sinuses. The segmentation result was 
comparable in quality to the ground truth manual segmentation (performed 
slice-by-slice by a trained operator). The CBCT images used, however, were of 
high spatial resolution and resolution, comparable to conventional CT images. 

Ogawa [43] investigated the use of CBCT for oropharyngeal airway examina-
tion in relation to Obstructive Sleep Apnea (OSA). Simple global thresholding 

https://doi.org/10.4236/ojmi.2017.74019


N. Kabaliuk et al. 
 

 

DOI: 10.4236/ojmi.2017.74019 200 Open Journal of Medical Imaging 
 

within the Amira segmentation package (Mercury Computer Systems/3D Viz 
group) was used for airway segmentation for 10 patients with OSA and 10 
healthy reference patients. Details of the segmentation approach and segmenta-
tion quality were not specified with the main focus being on quantifying airway 
obstruction.  

Farrell [44] reported the automatic segmentation of the oropharynx and la-
ryngopharynx from the soft palate to the vocal cords. The global thresholding 
technique was applied to segment the airway with the threshold value deter-
mined empirically. The selection process was not specified.  

Stratemann et al. [45] used a combination of global thresholding and manual 
slice-by-slice editing to segment the airways of 30 subjects for airway shape 
analysis. This study has the most complete airway coverage (from the nose tip to 
vocal folds) to date.  

Grauer [46] used a user-initialized 3-D surface evolution method [47] for 
semi-automatic airway segmentation to measure the pharyngeal airway volume 
and to characterise the shape of the airway. A volume within the airway is se-
lected by the user, and this is grown automatically to fill the airway volume using 
the image data to control the growth in one of several ways. The method was 
implemented in Insight SNAP 1.4.0 (Cognitica, Philadelphia, PA & Neuro Image 
Analysis Laboratories, University of North Carolina, NC). This method evolved 
into the snake evolution method implemented in ITK-SNAP [47] and used in 
the present work. The accuracy of the segmentation was evaluated using the 
coefficient of variation of the volume of the segmented geometries (the ratio of 
the standard deviation to mean volume), for a subsample of 5 segmentations. 
The coefficient of variation was less than that for manual segmentation (consi-
dered more accurate), but lower than the natural patient-to-patient variability in 
volume, and thus reliable for the intended purposes.  

Bui et al. [48] proposed an automated upper airway segmentation method 
consisting of the Gaussian mixture model (GMM) thresholding and morpholog-
ical operators to delineate head shape and the active contours used to estimate 
the region of interest and to initialize the active contour. The initial contour is 
then evolved using a multi-step level-set segmentation scheme. The results were 
evaluated using the Dice coefficient [49] [50], the volumetric overlap error 
(VOE), precision, recall, and F-score measures and compared to the expert ma-
nual segmentation. 

Salerno et al. [51] used a dynamic region-growing algorithm for oropharyn-
geal airway segmentation. A small volume within the structure of interest is se-
lected. This volume is then grown to encompass pixels that have an intensity 
similar to that of the original selection. The Otsu algorithm was used to select 
the threshold value to stop growth. The algorithm was successful, but resulted in 
incomplete airway models in narrow airways.  

Alsufyani et al. [52] systematically reviewed the three-dimensional segmenta-
tion of the upper airway using CBCT, and noted the lack of a reliable and opti-
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mized CBCT protocol for airway imaging and a limited number of published 
studies into the validity and reliability of 3D airway models generated from 
CBCT images. Volumetric methods of evaluating the accuracy of segmentation 
were tested, using manual segmentation and a simplified airway phantom as a 
reference. The complexity of the nasal cavity and maxillary sinuses, was noted to 
complicate the segmentation of these regions, compared to the simpler oropha-
ryngeal airway region. Consequently, assessments of the accuracy of segmenta-
tion based on studies of the oropharyngeal airway alone are not directly applica-
ble to whole-airway segmentations. 

The present work focuses on the segmentation of human airways from CBCT 
datasets obtained from dental institutions in New Zealand and in the USA. The 
aim is an objective comparison of the performance of a number of segmentation 
methods to provide the community with recommendations on how to approach 
upper airway segmentation. The upper airway, from the tip of the nose to tra-
chea, was split into two parts and segmented from the CBCT images using global 
thresholding, multi-step level-set, region competition with thresholding, clus-
tering and classification initialisation and edge attraction techniques. The accu-
racy of the segmentation approaches was assessed using a number of evaluation 
metrics, such as the Dice Similarity Coefficient, Jaccard Index, Void Fraction, 
Volumetric Similarity and Volume Ratio, and by direct comparison with manual 
segmentation.  

2. Methodology 

An anonymised head and neck cone-beam CT (CBCT) DICOM image series was 
used (see Figure 2) from a set of 30 studies obtained for the investigation of the 
upper airway shape variability in adults by Stratemann et al. [45]. Ethical ap-
proval was granted by the University of Otago Human Ethics Committee. The 
data was acquired with a New Tom QR DVT 9000 (Aperio, Sarasota, Fla) imag-
ing system. The gender and age of the patients was unknown. Table 1 contains 
the image characteristics and scan settings used to acquire used CBCT and typi-
cal reference CT images used for comparison (acquired using a Siemens Defini-
tion CT). 

The histogram of the CBCT image series used is plotted in Figure 3 with a 
histogram of atypical conventional CT image series. Note that the grey scale maxima  
 

   
Figure 2. Sample axial, sagittal and coronal CBCT images. 
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(a)                                        (b) 

Figure 3. Typical (a) CBCT and (b) conventional CT image intensity histograms. 
 
Table 1. CBCT and reference CT scan setting and image characteristics. 

Modality CBCT CT 

Image resolution 512 × 512 pixels 512 × 512 pixels 

Image size 16 bit 16 bit 

Slice thickness 0.377 mm 0.6 mm 

Pixel spacing 0.377/0.377 mm 0.42/0.42 mm 

Reconstruction diameter 193.024 mm 215 mm 

Peak Voltage (KVP) 120 kV 140 kV 

X-Ray tube current 15 mA 178 mA 

Gantry/Detector tilt 0 0 

Exposure time 10,000 ms 1000 ms 

Patient position Head First-Supine (HFS) Head First-Supine (HFS) 

Patient orientation Left-Posterior (L/P) Left-Posterior (L/P) 

 
and minima and the intensity peaks have different values. This is consistent with 
the fact that the grey scale values in CBCT do not represent true Hounsfield 
units. The CT grey scale is in Hounsfield units (HU) which are proportional to 
tissue density with zero being the radio density of distilled water at standard 
pressure and temperature (STP) and air having −1000 HU. The CT histogram in 
Figure 3 shows two distinct peaks, one for air and the other for tissue.  

To discriminate air and tissue in CBCT requires the relative position and 
height of the intensity peaks, rather than absolute number values. The CBCT 
histogram contains a third peak at low intensity (the very narrow peak at −2008 
grey scale units) which corresponds to the region in the image which is excluded 
from reconstruction, and is consequently empty. Compared to CT, the CBCT 
image intensity peaks are broader and overlap each other. The air peak is closer 
to the tissue peak than in CT. These differences are due to the greater noise and 
the variation of the tissue density-grey scale intensity relationship from region to 
region in CBCT images, and complicate segmentation.  

Scans were split into two regions: nasal cavity (from nares to nasopharynx) 
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and pharyngeal region (from nasopharynx to larynx) which were segmented 
separately, and the segmented structures then merged. 

2.1. Airway Segmentation 
2.1.1. Ground Truth (Manual) Segmentation 
CBCT images were manually segmented slice by slice by an experienced user to 
serve as reference or “ground truth” segmentation (it will be referred to as such, 
although this is not a true ground truth as the actual airway geometry is not 
available from any independent source). The segmented 3D model of the airway 
was stored in STL format. The frontal, maxillary, ethmoidal and sphenoidal si-
nuses were removed from the airway geometry by manual editing in Meshmixer 
(Autodesk Inc.) and MeshLab [53]. To preserve finite surface topology, no 
smoothing was applied. 

2.1.2. Semi-Automated Approaches 
Three semi-automated approaches were then employed to segment the upper 
airway from the nares to trachea from the CBCT image: 1) global thresholding, 
2) multi-step automated level set segmentation and 3) region competition and 
edge attraction snakes. 

2.1.3. Global Thresholding 
A global thresholding procedure was implemented using 3D Slicer, an open 
source software platform for medical image analysis [54]. The optimum thre-
shold values were estimated by examining the scan histogram. First, the mini-
mum image intensity, Imax, corresponding to the image feature of interest was 
located. Second, the width Δ of the histogram peak at 0.5Imax was measured. The 
optimum threshold value was then estimated to be located at around Imax + 0.5Δ.  

The optimal upper air threshold values were within −550 and −450 grey levels 
for the images analysed. These varied between image areas due to poor contrast 
and/or compromised resolution, particularly in the nasal cavity. The nasal pas-
sages are narrow (often comparable to pixel size) and intricate and the adjacent 
paranasal sinuses are particularly susceptible to over- or under-segmentation, 
when the segmentation result is too fine or too coarse respectively, when using 
global thresholding. This often results in nasal passages and sinuses being 
merged and requires laborious and tedious manual slice-by-slice editing to ob-
tain anatomically accurate airway segmentation [27]. Under-segmentation is 
preferred as it simplifies manual editing in post-processing. Editing the coarse 
result by adding under-segmented features to the segmentation in 3D Slicer 
software is more straightforward than removing the spurious boundaries that 
result from over-segmentation, as the segmentation mask the user is editing does 
not obscure the raw anatomical data used to guide the operator in tissue diffe-
rentiation.  

A medium threshold value of −500 grey levels was applied to the CBCT im-
ages using the Threshold Effect tool within the 3D Slicer Editor module. This 
value provided best segmentation coverage of the ROI (region of interest), as 
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determined from visual examination. Segmented images were then used to 
create a 3D surface model of the airway using the built-in marching cubes-based 
Model Maker module [55].  

2.1.4. Multi-Step Level-Set Segmentation 
A multi-step level-set segmentation scheme based on the method of Bui et al. 
[48] was evaluated. The method is based on combining a global and localized re-
gion-based active contour. In the first step, a Gaussian mixture model (GMM) is 
fitted to bone, tissue, and air pixel intensities. The resulting segmentation is then 
cleaned up using morphological hole-filling. This is used as initialization for a 
global active contour, in which the active contour evolution equation is given by 
a Kullback-Leiber (KL) divergence penalty between interior and exterior pixels. 
Finally, a fine-scale active contour is used, with the energy term favouring the 
long, thin regions that are present in the upper airway. The advantage of this 
method is that the global active contour is less sensitive to initialization while the 
localized active contour is more tolerant of in homogeneity. In addition, aniso-
tropy attempts to overcome the tendency of active contours to shrink surface 
area of segmented regions. A disadvantage of this method is that detection of 
bone tissue is poor in the final active contour steps. In addition, the performance 
of the method is not significantly higher than the classical Chan-Vese level set. 

2.1.5. Region Competition and Edge Attraction Segmentation 
Region competition snake and edge-based snake evolution segmentation ap-
proaches were applied using ITK-SNAP [47], which is an open-source semi-au- 
tomatic 3D medical image segmentation package. 

The initial shape of a 3D surface that represents a segmentation, called a 
“snake”, is coarsely initialized using a number of circular bubbles (the selection 
of pixels belonging to the region of interest (ROI) being made manually with a 
cursor) (see for example the pink regions in Figure 5(i)). The bubbles may 
merge as the snake evolves to provide the final segmentation. In region competi-
tion, the initialisation is not restricted to being inside the ROI, as the snakes 
evolve both inward and outward. In contrast, in the edge-based approach the in-
itialization has to be fully contained in the anatomical structure of interest as the 
snake evolves outward only.  

The propagation velocity (distance moved per iteration) of the snake is driven 
by the snake shape (smoothness) and the by a ‘feature’ image which is built from 
the original scan images. The construction of the feature image is a crucial step, 
because it drives snake evolution and thus may drastically affect the end result. 
Several types of feature image are possible. 

An edge-based feature image is constructed based on the intensity gradient of 
the original image (computed as the difference in neighbouring pixel intensi-
ties). Edges are thus defined as discontinuities in image intensity. The snake is 
forced to slow down near edges. The edge-based feature image is generated by 
applying Gaussian blur and computing the magnitude of the image intensity 
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gradient. The latter is then remapped in decreasing order to the range 0 to 1 to 
drive the snake evolution.  

A region competition feature image forces the snake to attract to boundaries 
of regions of uniform intensities. These may be produced using thresholding, 
clustering and classification image intensities to classify image regions as either 
background or foreground. The feature image is constructed by applying a 
smoothed step function to edges, with values of around 1 to foreground pixels, 
values of around −1 to background pixels, and values close to zero to pixels on 
the border between foreground and background. The feature image resembles a 
step function (from 1 to −1) which is smoothed to a degree set by the user. The 
image-dependent velocities force the snake to fill the boundary of the fore-
ground region and to shrink in the background region as the snake iteratively 
evolves.  

2.1.6. Feature Image Construction by Thresholding 
An upper threshold value of −468 grey levels was used in a combination with the 
maximum steepness of the feature function. These were selected based on visual 
examination of the pre-segmentation result, particularly, the nasal cavity and 
adjacent sinuses. The aim was to segment as much of the nasal passages while 
avoiding over-segmentation. The latter may lead to the sinus cavities and nasal 
cavity structure being artificially merged in the segmented image. The resolution 
of these anatomical features is often compromised by the narrowness of the air 
passages in combination with high noise levels in CBCT images. The signal-to- 
noise ratio (SNR) for the CBCT system used in this study was 26 dB (measured 
in constancy tests with a calibration phantom). 

2.1.7. Feature Image Construction by Clustering or Multi-Thresholding 
Multi-thresholding was applied by considering three clusters, each of which is a 
set of pixels with similar intensities. These clusters identify the parts of the image 
with intensities corresponding to air, tissue and bone (Figure 5(g) and Figure 
5(h)). In this study, 60,000 samples produced the best result, as visually judged 
by the operator, based on the balance between segmentation completeness and 
undesirable over-segmentation when different sample sizes were used. No itera-
tions were necessary. 

2.1.8. Classification 
Three classes of pixels corresponding to air, soft tissue and bone in the image 
were user-defined within the classification mode of the pre-segmentation to be 
used for automatic feature image value assignment. 20 - 25 slices from the three 
axes were used to draw examples of the classes. Particular attention was paid to 
accurately classifying pixels within the nasal cavity, specifically defining the 
boundaries between the nasal passages. 

2.1.9. Edge Attraction 
Edges in the CBCT image were found and accentuated using the edge attraction 
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mode of image pre-segmentation and snake evolution. The following feature 
image construction parameters were applied: scale of Gaussian blurring of 1, 
edge transformation constant of 0.01 and edge transformation exponent of 4 
points. These settings provided optimal detection and strengthening of anatom-
ical features boundaries in the images as judged by an experienced user. The 
snake was initialised within the region of interest, at 20 to 25 locations within the 
airway passages. 

2.2. Metrics Used to Evaluate the Segmentation 

The airway geometries extracted by the automatic and semi-automatic segmen-
tation techniques were compared to the “ground truth” manual segmentation 
using distance-, overlap- and volume-based measures to evaluate the similarity 
between the ground truth segmentation (GT) and a test segmentation (S), and 
the completeness of the test segmentation (S). 

2.2.1. Distance Metrics 
The Hausdorff Distance dHD is defined as the distance from a point in one sur-
face mesh (i.e. ground-truth manual segmentation GT) to the closest point in the 
other mesh (i.e. test segmentation S) or vice versa [56]. The maximum of the two 
one-sided Hausdorff Distances ( ) ( ){ }HD max GT,S , S,GTHD HDd d=  was used 
in this study. HD measures similarity but not completeness. Small values indi-
cate a good match. 

2.2.2. Overlap Metrics 
The Dice Similarity Coefficient (DSC), Jaccard Index (JAC) and Void Fraction 
(VF) were used to evaluate both similarity and completeness. 

DSC represents the ratio of (twice the intersection (spatial overlap) of the two seg-
mented geometries) to (the sum of the volumes), i.e. ( ) ( )DSC 2GT S GT S= +  
[49] [50]. DSC ranges from 0 to 1, with higher values indicating a higher degree 
of similarity and completeness between the two geometries. Lower values sug-
gest the test segmentation S is incomplete and/or contains voids not present in 
GT. 

The Jaccard Index represents the intersection between the ground truth and 
tested segmentation divided by their union [57]. It is related to the DSC by 

( )JAC DSC 2 DSC= − . High values are desired, with perfect segmentation re-
turning a value of 1. 

The Void Fraction is one minus the intersection of the two geometries divided 
by the volume of the ground truth geometry, i.e. ( )( )VF 1 GT S GT 100%= − ⋅ . 
The desired value is 0% indicating a complete overlap between the compared 
segmentations and absence of voids in the segmented geometry. 

2.2.3. Volumetric Measures 
The Volume Ratio (VR) and Volumetric Similarity (VS) indicate the degree of 
possible over-segmentation. They serve a different function to the overlap based 
metrics which indicate similarity and indirectly, as a reciprocal, the degree of 
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under-segmentation.  
Volume ratio (VR) is the ratio of the segmented volume to the volume of the 

ground truth segmentation, VR S GT= . The desired value is 1. 
The Volumetric Similarity (VS) was defined as the absolute segmentation volume 

difference divided by the sum of the compared volumes, ( ) ( )VS S GT GT S= − + . 
The desired value is zero. VS does not measure overlap, and it is possible to ob-
tain a value of zero with two geometries which are different shapes and which do 
not overlap in any way. As such it should not be used alone. 

3. Results  

The manual segmentation used as ground truth is shown in Figure 4(a). Figure 
4(b) shows the same airway after the paranasal sinuses have been manually de-
leted. 

3.1. Pharyngeal Region Segmentation 

Figure 5 shows the Hausdorff distance (HD) for the clustering segmentation 
(the worst performing of the methods which succeeded). The greatest deviations 
from the ground truth in the lower part of the airway were in three areas: around 
the pharyngeal recess (Rosenmuller’s fossa), around the opening to the Eusta-
chian tube, and around the epiglottis. These locations have voxels within the 
tissues adjacent to the airway with intensities close to that of with air (such as 
mucus). Noise in the image also contributes.  
 

    
(a)                  (b)                   (c)                    (d) 

Figure 4. 3D model of the manual ground truth airway segmentation from the CBCT 
images: (a) before sinus removal; (b) after deletion of sinuses. 
 

    
Figure 5. Typical Hausdorff Distance colour map (anterior and lateral view) for the pha-
ryngeal airway segmented by clustering (low and high values are in blue and red respec-
tively). 
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The root mean square (RMS) Hausdorff distance (HD) values were within 0.4 
mm, which is comparable to the voxel size. The maximum HD values for the 
segmentations using the global thresholding, threshold and classification snake 
initialisation and multi-step level-set methods ranged from 2.2 to 5.8 mm, with 
mean values within 0.2 mm (Table 2).  

However, for clustering, the HD was at the high end of this range (up to 5 
mm, i.e. 2.6 times the voxel size) with an RMS of 0.8 mm. This was due to noise 
in the image, visible in the histogram, resulting in larger clusters. 

3.2. Nasal Cavity Segmentation 

The nasal cavity region was much less straightforward to segment, compared to 
the pharyngeal region, and was analysed in greater detail. 

Mid-axial images (i.e. images from the centre of the reconstructed volume), 
segmented with the global thresholding technique, are shown in Figure 6(a) and 
Figure 6(b). Examples of the pre-segmentation and final active contour seg-
mentation using the multi-step level-set method are shown in Figure 6(c) and 
Figure 6(d). The thresholding (used for remapping and feature image construc-
tion) and final region competition segmentation for the CBCT data can be seen 
in Figure 6(e) and Figure 6(f). Figures 6(g)-(j) illustrate clustering, classifica-
tion and the corresponding final segmentation results. 

The edge attraction-based segmentation failed irrespective of the set parame-
ters of active contour initiation and/or segmentation (see Figure 6(k) and Fig-
ure 6(l)). The snake leaked into the structures surrounding the airway, even-
tually encompassing complete ROI. 

Figure 7 shows the Hausdorff distance (HD) for the clustering segmentation 
(the worst performing of the methods which succeeded). The nasal cavity was 
prone to over- or under-segmentation. The areas problematic for segmentation 
 
Table 2. Hausdorff Distance histograms for the nasopharyngeal-laryngopharyngeal re-
gion, for all segmentation methods compared to the ground truth manual segmentation. 
Vertical scale in millimetres. 

     

Global thresholding Multi-step level-set Threshold Threshold Classification 

max: 2.2 
mean: 0.2 
RMS: 0.3 

max: 3.6 
mean: 0.16 
RMS: 0.1 

max: 3.8 
mean: 0.2 
RMS: 0.2 

max: 5.2 
mean: 0.4 
RMS: 0.8 

max: 3.2 
mean: 0.16 
RMS: 0.4 

  Snake initialisation techniques 
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Figure 6. CBCT image segmentation of nasal cavity and paranasal sinuses: (a) a set of raw 
mid-axial, coronal and sagittal CBCT images; (b) Global thresholding label map (seg-
mented airway in green); (c) GMM based segmentation initialisation (in white) and (d) 
multi-step level-set segmentation result (final segmented airway in pink); (e) Threshold-
ing region competition snake initialisation and (f) resulting final segmentation after re-
gion competition; (g) Clustering pre-segmentation and (h) resulting final segmentation 
after region competition (segmented airway in pink); (i) Classification initialisation with 
classifiers for air (pink), tissue (green) and bone (blue) and (j) resulting final segmenta-
tion after region competition; (k) Edge-based feature image and (l) evolved snake, which 
clearly failed. 
 

 
Figure 7. Typical Hausdorff distance colour map (anterior and lateral view) for the nasal 
cavity segmented by clustering (low values in blue and high in red colour). 
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were the nasal vestibule and inferior meatus. This was associated with the poor 
contrast between the air-filled passages and neighbouring tissues of low density 
such as septal cartilage and mucus.  

The maximum Hausdorff distance was 5.0 - 5.6 mm and was similar for all 
methods (Table 3). Mean and root mean square values ranged from 0.28 to 0.6 
mm and 0.47 to 0.91 mm respectively. The highest discrepancies were observed 
for clustering, around the nasal cavity region in particular. The other techniques 
all returned a mean HD comparable to the voxel size, which is the minimum 
that can be expected. 

The overlap and volumetric metrics (computed for the nasal cavity only) are 
shown in Figure 8. The Dice Similarity coefficient ranged from 0.85 for global 
thresholding to 0.96 for clustering (Figure 8(a)). The other segmentation me-
thods had DSC of 0.90 - 0.92. On this basis alone, clustering would be preferred. 
The Jaccard Index, being closely related to the DSC, gave similar trends. Global 
thresholding gave the lowest Jaccard Index of less than 0.75. The highest values, 
0.93 and 0.85, were associated with clustering and classification respectively.  

The highest value of the Void Fraction VF (20%) was observed for global 
thresholding, suggesting this segmentation is incomplete. The lowest VF value of 
about 5% was observed for clustering, with classification giving the next best of 
12%. 

The highest values of Volume Ratio (1.5) were observed for clustering (Figure 
9(a)). For the other segmentation methods, the nasal cavity volume was within 
7% of the ground truth shape. 

The Volumetric Similarity (VS) was the lowest for clustering which suggested, 
along with visual examination, that clustering led to over-segmentation of the 
nasal cavity (Figure 9(b)). 

The value of the key metrics are summarised in Table 4 along with the ideal 
values. The Jaccard Index is omitted as it conveys no more information than the  
 
Table 3. Hausdorff Distance histograms for the nasal cavity region, for all segmentation 
methods, compared to the ground truth manual segmentation. Vertical scale in millime-
tres. 

     

Global thresholding Multi-step level-set Thresholding Clustering Classification 

max: 5.39 
mean: 0.28 
RMS: 0.47 

max: 5.21 
mean: 0.40 
RMS: 0.71 

max: 5.51 
mean: 0.38 
RMS: 0.66 

max: 5.60 
mean: 0.59 
RMS: 0.91 

max: 5.54 
mean: 0.36 
RMS: 0.63 
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(a) 

 
(b) 

 
(c) 

Figure 8. Dice Similarity Coefficient (a); Jaccard index (b) and Void Fraction (c). 
 
Table 4. Summary of metric values, including the ideal (target) values. The Jaccard Index 
is omitted as it conveys the same information as the Dice Similarity Coefficient. 

 

Mean  
Hausdorff 
Distance 

(nasal cavity) 
(mm) 

Mean Hausdorff  
Distance  

(pharyngeal region) 
(mm) 

Dice  
Similarity  

Coefficient 

Void  
Fraction  

(%) 

Volume 
Ratio 

Volumetric 
Similarity 

Global  
Thresholding 

0.28 0.2 0.85 20 0.93 1.04 

Multi-step 
level-set 

0.40 0.16 0.89 13 0.93 1.04 

Thresholding 0.38 0.2 0.90 14 0.98 0.98 

Clustering 0.59 0.4 0.96 6 1.53 0.79 

Classification 0.36 0.16 0.92 12 1.03 1.01 

Ideal value 0 0 1 0 1 0 
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(a) 

 
(b) 

Figure 9. Segmented to ground truth airway volume ratio (a) and volumetric similarity 
(b). 
 
Dice Similarity Coefficient. These values are computed for the nasal cavity only, 
and do not include the pharyngeal region, for which discrepancies from the 
ground truth were much smaller. 

4. Discussion 

Manual feature segmentation of medical scan data is a laborious and time-con- 
suming task, and there is a demand for an accurate segmentation methods 
which are either automatic, or require less user input [52]. The accuracy and 
versatility of the few existing automatic and semi-automatic methods, are un-
der-researched. The global thresholding and snake evolution methods tested 
here are semi-automatic. Limited manual input was still required for optimum 
threshold selection, snake initialisation and snake evolution control. The mul-
ti-step level-set segmentation algorithm of Bui et al. [48] is fully automatic. For 
all methods, for the typical dental CBCT data segmented here, some manual 
editing was often needed to fill holes caused by mucus in the nasal cavity being 
wrongly identified as tissue. 
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Global thresholding is straight forward but relies heavily on the user’s expertise 
in selecting an optimal threshold value. Use of a single threshold value makes it 
prone to either under- or over-segmentation. In this study under-segmentation 
was found to be more favourable when segmenting the nasal cavity due to the 
complexity of the nasal passages, their narrowness (comparable to pixel size), 
and the poor image contrast and high noise levels in CBCT images (SNR ~26 
dB). The downside of under-segmentation was the presence of voids in the air-
way geometry. These were time consuming to fix using slice-by-slice manual 
editing and may compromise the accuracy of the anatomical feature representa-
tion when editing is performed on the final 3D mesh. A histogram based ap-
proach to optimum threshold estimation, described above, offers a less us-
er-dependent selection method compared to the traditional visual examination 
method widely employed [43] [44] [45]. 

The multi-step level-set segmentation algorithm by [48] is fully automatic for 
selecting regions of interest and segmenting. It did however result in somewhat 
incomplete segmentation and did not cater for the manual editing mentioned 
above. However this could be added to a package implementing the method. 

The region competition and edge attraction snake evolution methods available 
in ITK-SNAP give the user a range of semi-automatic tools which reduce user 
workload. However the quality of the results depended on the user’s prior seg-
mentation experience and judgement. Optimal threshold selection remains 
wholly user-dependent. The sharpness of the feature function affects the degree 
to which the snake fits the boundary of the foreground region. A steeper feature 
function was found to reinforce weak edges (those with shallow intensity gra-
dients), of the segmented features: this is of particular use in CBCT images 
compromised by high noise levels.  

The clustering method was found to be unreliable for the CBCT data. It was 
prone to pick up noise in the image, and led to over-segmentation.  

Classification allowed the process to focus on the intensity distribution in the 
target areas of the image by manually training tissue classifiers. Having more 
slices used to classify the image into air, tissue and bone improved pixel intensity 
statistics used for segmentation.  

Edge attraction allows for the amount of the blurring applied to be altered. 
The parameters of the remapping function can also be adjusted to contrast the 
feature image. Even though edge attraction worked well in the thin homogene-
ous regions of the image which belong to the same anatomical feature with dif-
ferent intensities, it failed in the nasal cavity region of the CBCT images used. 
This is due to the low contrast and high levels of noise in CBCT images leading 
to poorly defined feature edges. 

Alsufyani et al., 2012 reported the lack of a protocol to test the accuracy, va-
lidity and reputability of the segmented 3D airway models after reviewing 16 
studies that applied automatic or semi-automatic techniques for upper airway 
segmentation from CBCT images. In fact, only 50% of the reviewed studies at-
tempted to validate the segmentation results and reported the methodology 
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used.  
In this study, distance-based, overlap-based and volume-based metrics were 

used to evaluate CBCT segmentation of the airways. Segmented airway geome-
tries were split into two parts, the nasal cavity and the pharyngeal region. This 
was done to facilitate the comparison against the ground truth segmentation as 
the two were recognised to pose different challenges to the segmentation process 
[45] [48]. The nasal cavity region was more difficult to segment due to the com-
plexity and small scale of the anatomical features. The multi-step level-set seg-
mentation by [48] performed satisfactory in terms of Hausdorff Distance values 
for the nasopharyngeal-laryngopharyngeal airway region. The method, however, 
gave higher Hausdorff Distance values for the nasal cavity region (exceeded only 
by clustering). The measured Dice Similarity Coefficient and Volumetric Simi-
larity, 89% and 1.04 respectively, were lower than those reported by [48], (94% - 
97% for DSC and 1.07 - 1.12 for the Volumetric Overlap Error (VOE) which is 
similar to VS). The latter may be explained by the different quality of the CBCT 
data used in the present study: Bui et al.’s data had finer spatial resolution (0.2 - 
0.25 mm in 640 × 640 pixel images).  

Region competition snakes with clustering active contour initialisation gave 
the highest Dice Similarity Coefficient of 97% and the lowest Void Fraction val-
ue of 6% suggesting a higher degree of similarity to the ground truth segmenta-
tion. This, however, was misleading. The volume ratio was higher (by 50%) than 
any other method tested, which suggests over-segmentation. Of the range of 
metrics, clustering returned some results closer to the ideal values than other 
methods tested, and some farther from the ideal, showing the importance of us-
ing more than one metric to evaluate segmentation methods. 

Thresholding and classification initialisation methods performed satisfactorily 
as judged using the spatial distance, overlap and volumetric based evaluation 
metrics. These, and Multi-step level-set, performed on a par with each other, 
equally well in all metrics. 

Of these, classification performed the best with the highest Dice Similarity 
Coefficient (92%), Volumetric Similarity closest to 1, the lowest Void Fraction 
(12%) and Hausdorff Distances bettered only by global thresholding and mul-
ti-step level-set. Classification was intuitive to use and did not require extensive 
segmentation experience. It produced robust results with least amount of ma-
nual post-processing required. 

The values of the similarity indexes for the nasal cavity airway region were 
on average lower than those reported in the literature for the nasopharyn-
geal-laryngopharyngeal airway. Salerno et al. [51] reported the mean values of 
Dice Similarity and Jaccard Coefficients of 94% and 92%, respectively, bettered 
in this study only by the otherwise erratic clustering method. This suggests that 
care must to be exercised when segmenting this region of the airway.  

An alternative method that uses shape-guided segmentation [58] [59] may 
have the potential to automate airway segmentation and generate accurate air-
way from CBCT images, but was not tested here. A representative airway tem-
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plate is needed for this method. A population average or mean representative 
geometry, such as that of [27], may be used as a shape template to match to the 
airway image being segmented. 

5. Conclusions 

For segmenting the human upper airway from a typical dental CBCT scan of 
high noise and low contrast (relative to conventional CT), the following methods 
were tested: 

Global thresholding was the most straightforward, but the optimum thre-
shold value was highly dependent on image quality and the user’s familiarity 
with the anatomy. A simple and objective histogram-based approach performed 
well for determining the threshold value, compared to subjective visual thre-
shold estimation.  

Multi-step level-set segmentation required the least user input, but some 
input was still required to check the nasal cavity region. Quality indices for the 
nasal cavity were lower than those reported by Bui et al. [48], due to the poorer 
contrast and resolution of the CBCT images used in the present study.  

Snake evolution requires less user input than global thresholding, but more 
than multi-step level-set. We recommend using the minimum remapping func-
tion steepness setting for noisy CBCT data, due to the shallow intensity gra-
dients (weak edges). 

Several methods were trialled to initialize the snake, which showed markedly 
different performance: 

Initialization with clustering was compromised by the noise in the images 
and performed poorly for the nasal cavity region.  

Initialization with classification was the most promising method. The more 
scan slices used to train the air, tissue and bone classifiers, the better the final 
result.  

Initialization by edge attraction failed in the nasal cavity region due to the 
low contrast and high noise in the CBCT images. Use of blurring may return 
better performance for images of higher contrast and higher signal-to-noise ra-
tios than used here. 

Manual editing was required to fill voids due to mucus for all methods tested 
here. 

Several distance, overlap, and volumetric metrics were trialled to evaluate the 
quality of the segmentation objectively. The use of any single metric can be mis-
leading, particularly when the data is under- or over-segmented.  

The nasal cavity is particularly challenging to segment due to the small scale 
of the airway passages, the intricate structure, the adjacent paranasal sinuses, li-
mited spatial resolution, low contrast and noise. The greatest discrepancies be-
tween the segmentation methods tested and a careful manual segmentation were 
about 5 mm (Hausdorff distance) and were found in the nasal vestibule and in-
ferior meatus, due to the septal cartilage and mucus often being incorrectly seg-
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mented as part of the airway. The pharyngeal region was relatively insensitive to 
the segmentation method. The pharyngeal recess (Rosenmuller’s fossa) was the 
most difficult part of this region to segment correctly. 
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