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Abstract. Label-free angiographic methods based on optical coherence 

tomography (OCT) visualize blood vessels utilizing detection of red blood cells 

motion against surrounding static tissue. However, in practice, the surrounding 

tissue is never still due to natural motions of living organisms (e.g., breathing or 

heart beating). To mitigate large scale motions of the tissue relatively to the OCT 

probe the tissue examination can be performed in contact mode. In such a case, 

however, the OCT probe inevitably exerts some pressure onto the tissue, so that 

bulk motions lead to interframe deformations and depth-dependent tissue 

displacements, which have to be numerically compensated prior to angiographic 

visualization. Usually, sufficiently small deformations primarily affect pixel phases 

in OCT images rather than pixel amplitudes, and, therefore, phase-only 

compensation of the masking motions may be fairly sufficient. However, in case of 

larger strains and supra-wavelength displacements, larger inter-scan phase 

variations of the order of several periods lead to the appearance of pronounced 

“decorrelation noise” in which variations in pixel amplitudes and phases are 

combined. This effect significantly degrades the quality of the final OCT-

angiography images. In this paper, we present a new method allowing to a 

significant degree to compensate this phase-amplitude decorrelation caused by 

spatially-inhomogeneous supra-wavelengths displacements. This compensation is 

based on the Fourier-shift theorem, which allows one to back-shift fragments of the 

deformed OCT-scans to their initial positions before deformation. At the same time 

variations of pixels due to the motion of blood particles within smaller-in-size 

vessel cross sections are retained. Although such backshifts do not compensate 

relative motions of sub-resolution particles, this procedure efficiently reduces 

decorrelation even for fairly big spatially-inhomogeneous displacements and leads 

to much lower signal variability outside blood vessels while preserving high 

variability inside. The proposed compensation method is compared to the earlier 

proposed phase-only compensation using simulated data. Pronouncedly lower 

strain-induced artefacts and much higher contrast between blood vessels and 

background are demonstrated. © 2022 Journal of Biomedical Photonics & 
Engineering. 
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1 Introduction 

Optical coherence tomography (OCT) is one of the most 

innovative and rapidly evolving techniques in recent 

years. Beyond improvement of structural visualization, 

including such problems as increasing imaging speed and 

resolution, other OCT-based modalities are evolving. 

One can mention polarization-sensitive OCT 

imaging [1, 2], speckle contrast visualization [3], OCT 

elastography – mapping of Young’s modulus of a 

tissue [4–7], and the most broadly used OCT 

angiography (OCTA) – visualization of blood 

vessels [8–11]. 

OCT-based angiography enables label-free imaging 

of blood microcirculation based on singling out motion 

of red blood cells (RBCs) against surrounding “solid” 

motionless tissue. This is an important distinction of 

OCTA from such angiographic methods as opto-acoustic 

imaging based on selective absorption of optical waves 

with certain wavelengths [12]. The latter effect is 

independent of RBCs motion, so that perfused vessels 

with moving blood and the ones with blood flow stasis 

are not easily differentiable.  

For OCTA, differentiation of blood flow from 

surrounding “motionless” tissue is based on detection of 

temporal speckle variability in OCT images in regions of 

blood vessels. Erythrocytes are the main scatterers inside 

blood vessels and it is their motion which leads to 

increased temporal speckle variability in vessel cross 

sections. Particular OCTA techniques use various 

approaches to the variability estimation. Historically, 

first were developed methods utilizing the Doppler 

frequency shift [13–15]. Some methods are using only 

variations in amplitude/intensity (speckle variance) [8] or 

only variations of phase (phase variance) [16] for a series 

of B-scans obtained for the same position. One should 

also mention approaches as differential operations [17] 

and evaluation of temporal decorrelation for a series of 

sequential OCT scans acquired for the same 

position [18, 19]. 

An important point is that often OCTA methods use 

acquisition of a pack of B-scans from the same position 

with a subsequent step-wise shift to the next position. 

Such jump-like steps may lead to transitional oscillations. 

To eliminate this effect, a scanning pattern with a smooth 

shift from B‑scan to B-scan with 10–14 fold self-

overlapping in the direction of slow scanning was used in 

this study similarly to work [20]. In this approach “solid” 

biological tissue also exhibits some variability from B-

scan to B-scan but this variability is much lower than 

inside blood vessels, therefore the latter ones still can be 

singled out.  

The OCTA method used in this work is high-pass 

filtering (detailed discussion can be found in Ref. [20]), 

which naturally utilizes the described above smooth 

scanning protocol. Briefly, in this method, B-scans are 

high-pass filtered in the slow scanning direction over 

which the B-scans are significantly self-overlapped. 

“Static” tissue does not change much from B-scan to 

B-scan. This fairly slow variability corresponds to low 

frequencies in the spectrum whereas blood vessels have 

high variability, and therefore correspond to high 

frequencies. By suppressing low frequencies (which 

basically corresponds to high-pass filtering) one 

suppresses the static tissue. As only a fairly small portion 

(~10) of B-scans are overlapped and it does not make 

sense to compare B-scans that do not overlap, high-pass 

filtering can be performed using a sliding window. 

Furthermore, the Fourier transform operations for finding 

the spectrum, high-pass filtering and the subsequent 

inverse Fourier transform for obtaining again the time-

domain signal can be realized via convolution of the 

acquired sequence of time-domain signals with a 

properly chosen temporal sliding window. Its length is of 

the order of the number of overlapping B-scans (in the 

below-presented examples this number is chosen L = 7) 

and the Fourier spectrum of the sliding convolution 

window corresponds to the form of the spectral window 

required for high-pass filtering [20]. 

Actually for all OCTA methods based on detection of 

increased temporal variability of signal from the regions 

of vessels, a very serious problem is that the surrounding 

“static” living tissue is not static at all and usually 

exhibits fairly intense physiological motions (due to 

breathing, heart beating, etc.) These motions often may 

strongly mask the sought signal variability related to the 

blood circulation, which significantly corrupts the quality 

of OCTA images if no additional measures are 

undertaken to either physically immobilize the “solid” 

tissue or to digitally compensate them. Physical tissue 

immobilization is often used in model studies on animals 

(in particular, special immobilizing dorsal window 

chambers can be used like, e.g., in study [21]), however, 

immobilizing devices often are not suitable even in 

experiments with animals and, moreover, cannot be used 

for examining patients. Alternatively, various methods of 

numerical compensation of masking tissue motions have 

been considered (see, e.g., review [22]).  

In particular, for non-contact OCT examinations, the 

physiological motions of “solid” tissue cause 

predominantly translational shifts of compared OCT 

scans. In methods based on comparison of complex-

valued OCT signals (i.e., the signals with amplitude and 

phase) the signal variability is dominated by axial 

motions rather than lateral ones (similarly to the 

domination of axial Doppler effect over the transversal 

Doppler effect). Axial motions with essentially sub-

wavelength amplitudes mostly affect the signal phase and 

can be efficiently compensated using estimation of 

depth-averaged phases of compared in-depth 

A-scans [23]. However, motions with significantly 

stronger (supra-wavelength) axial displacements cause 

significant phase variations of the order of several 

periods and, moreover, are accompanied by appreciable 

variations in the signal amplitude. In combination they 

lead to high “decorrelation noise” which strongly masks 

the sought variability caused by blood-particle motions 

and, correspondingly, causes strong degradation of the 

final OCT-angiography images.  
To prevent such large-amplitude motions typical of 

non-contact examination of living tissues, for situations 
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in which the use of tissue-immobilizing devices is 

impossible (especially when working with patients), 

OCTA can be realized in contact mode as proposed in 

Ref. [20]. However, along with suppression of large-

amplitude translational motions in contact mode, the 

pressure of the OCT probe onto the tissue causes 

deformations (strains) in the tissue. The resultant strain-

induced displacements of scatterers still may be fairly 

intense (their amplitude may be essentially supra-

wavelength). Next, for strain-induced deformations in 

contact mode, displacements of scatterers are essentially 

spatially inhomogeneous unlike translational 

displacements in non-contact mode. Despite smaller 

amplitude of displacements in comparison with “typical” 

displacements in non-contact mode the above-mentioned 

strain-related interframe deformations still produce a 

rather strong masking effect and may significantly reduce 

the quality of angiographic images. Thus, such strain-

induced displacements also need to be compensated. 

However, as demonstrated in Ref. [20], in contrast to 

translational motions, this compensation cannot be 

depth-averaged along the entire scan depth. Rather, the 

compensation procedure should take into account the 

spatial inhomogeneity of the displacements. Paper [20] 

demonstrated a variant of such compensation which was 

based on signal-phase correction (similarly to the 

translational case [23], but with additional accounting for 

depth-dependence). Compensation in such a form, 

nevertheless, retains to an appreciable degree the 

deformation-induced masking decorrelation of the scans 

in areas of “solid” tissue, especially in regions of supra 

pixel displacements, when the signal phase and 

amplitude both contribute to the scan decorrelation.  

In this paper, we consider an improved compensation 

method to mitigate masking effects in the case of such 

spatially-inhomogeneous deformation-induced masking 

motions of the “solid” tissue. The method utilizes a 

spectral approach to fairly accurately locally back-shift 

fragments of deformed complex-valued OCT scans 

(including supra-wavelength displacements). To 

demonstrate the efficiency of the proposed approach and 

compare it with the earlier used pure phase correction, we 

utilize processing of 3D data sets of simulated OCT data 

using the flexible simulation platform reported in the 

earlier paper [24]. The utilization of simulated data sets 

is very convenient because unlike physical experiments 

parameters of both the masking tissue motion and the 

sought motion of scatterers mimicking erythrocytes are 

precisely controllable and can be very flexibly varied. 

Furthermore, measurement noises with controllable level 

can also be easily simulated. For such highly controllable 

conditions enabled by the used simulation we 

demonstrate that the proposed approach enables 

significant improvement of angiographic OCT-based 

visualization in contact mode. 

2 Simulation Model  

There are different approaches to simulation of OCT 

scans. The most known are Monte-Carlo 

methods [25–27] in which pseudo-random generation of 

trajectories for a huge amount of photons is made to 

calculate their propagation and scattering. It performs 

really well in a situation when a single scan or a few scans 

are required. However, due to high computational 

demands, the Monte-Carlo approach is not very suitable 

for generation of large blocks of B‑scans with moving 

particles to imitate OCT-based visualization of blood 

flow. In this study, we use the description of OCT-scan 

formation by weakly focused illuminating beams 

presented in Ref. [24], in which elements of the earlier 

proposed simplified model [28] (for one-dimensional 

illuminating beams with uniform cross section) and 

model [29] with rigorous accounting of illuminating-

beam focusing are combined. The model form [24] is 

computationally rather efficient and at the same time 

fairly realistic for describing scans for widely used OCT 

systems with weakly focused beams that enable 

approximately depth-independent lateral resolution. In 

this approximation, it is possible to account for a 

Gaussian distribution of the beam amplitude in the lateral 

direction, whereas the phase front curvature can be 

neglected, which was verified by comparison with more 

rigorous model [29]. Next, the used model utilizes the 

commonly used approximation of ballistic scattering 

from a set of localized discrete scatterers [30]. Initially 

these point-like scatterers are seeded within the 3D 

imaged volume. Their positions can be chosen arbitrary, 

so that for imitating real tissues it is reasonable to 

randomly distribute such discrete scatterers with the 

density corresponding to the typical concentration of 

biological cells (approximately 5 µm between 

neighboring randomly located scatterers). The scattering 

strength for the scatterers can be also varied (for example, 

to imitate regions with various brightness). Certainly, 

scattering strength with random distribution around some 

mean value can easily be realized, but it was verified that 

even for identical scatterers, the speckle statistics 

becomes “fully developed” (with speckle amplitudes 

fairly close to Rayleigh distribution) starting from a 

concentration higher than 1.5–2 particles per sample 

volume [28]. The Gaussian profile of the scanning 

illuminating beam readily allows one to describe how the 

scatterers gradually leave and enter the beam cross 

section. The scatterers can experience arbitrary 

displacements between the consequently formed OCT 

scans. Due to this feature, the model can easily simulate 

both the blood flow and various masking motions of the 

surrounding tissue [24].  

Other main features of spectral-domain OCT 

scanners (the central wavelength, the number of received 

discrete spectral components and overall shape of the 

illuminating-beam spectrum) can also be readily 

accounted for the used model [24]. These spectral 

characteristics determine the resultant axial resolution 

(axial size of the point-spread function in the OCT 

image), the total imaging depths limited by the step 

between neighboring spectral components and the 

number of pixels in the formed complex-valued A-scans. 

Another feature that is important for the present study is 

that the used simulation method readily allows one to 
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imitate various measurement noises with any required 

signal-to-noise ratio by adding to every pixel random 

complex-valued quantities.  

With all these features, using the 4-core (Intel Core 

i5) laptop Lenovo IdeaPad S340 the model generates 

2D image 250 by 40 pixels with 8000 point-like scatters 

in 7 sec and 3D image 250 by 25 by 90 pixels with 

170000 scatterers in a reasonable amount of time – 4 h. 

For the chosen scan sizes, this amount of scatterers 

imitates the typical density of living cells. It is worth to 

mention that simulation time can readily be reduced by 

using more computationally powerful facilities. The 

other parameters for simulation of the OCT images were 

chosen corresponding to the parameters of a typical 

experimental setup: central wavelength of the spectrum – 

1.3 mm in the air, spectrum width ~100 nm and the radius 

of the illuminating beam is ~15 μm. The pixel size is 

4 μm in the axial z-direction and 16 μm in the fast 

scanning x‑direction in the B-scan plane. In the slow-

scanning y-direction the inter-B-scan step is 2.14 μm, this 

step being ~14 times smaller than the beam diameter. 

3 Bulk Motion Compensation 

As was mentioned above, a great challenge of 

angiographic visualization is that tissues surrounding 

blood vessels are not static due to natural motions of 

living objects such as heartbeat, breathing, etc. Since in 

OCTA the vessels visualization is based on estimation of 

signal variability, one must mitigate the masking effect 

of tissue motions when performing angiographic signal 

processing. There are two main options to do this. 

The first option is to physically immobilize the 

examined tissue, e.g., using a dorsal chamber with a 

transparent window which is often used in experiments 

with animals [21, 23]. Such immobilization helps to deal 

with large-amplitude translational tissue motions 

relatively to the OCT probe. However, small-amplitude 

residual motions may still occur and their masking effect 

is mostly related to phase variations of the OCT-signal 

due to the axial component of these small-amplitude 

motions. Indeed, phase of the pixels in OCT scans is 

much more sensitive to axial motions rather than lateral, 

and small sub-wavelength masking motions mostly lead 

to phase variations. For the discussed translational 

motions, the resultant inter-scan phase variation is the 

same across all the depth. These fairly small depth-

independent phase variations can be compensated 

numerically by calculating and compensating phase 

difference Δφ of the compared in-depth A-scans with 

complex-valued amplitudes A1 and A2; the phase 

difference is averaged along the entire depth: 
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where z is a pixel index, N is the number of pixels in an 

axial direction, A1 is the reference A-scan and A2 is the 

compared A-scan. Thus, the corrected complex-valued 

amplitude 
'
2A  is acquired by the correcting phase factor 

as follows:  
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This procedure helps to efficiently match the inter-

scan phases in the regions of tissue around the vessels. 

On the contrary, in the cross-sections of vessels, the 

motions of scatterers are essentially independent of the 

bulk tissue motions, so that such depth-averaged inter-A-

scan phase correction still preserves the phase variability 

within vessel cross sections. Then, this local signal 

variability can be singled out in one or another way (e.g., 

by estimating the signal variance [21] or applying high-

pass filtering [23]). The idea of the compensation method 

is schematically shown in Fig. 1. 

The above-discussed immobilizing devices usually 

are not acceptable for application on patients. For this 

reason, an alternative approach was proposed in Ref. [20] 

to perform angiographic visualization in contact mode 

(when an OCT probe is in direct contact with the 

examined tissue, which may be quite acceptable for both 

animals and patients). The direct contact allows one to 

prevent large-scale tissue motions relatively to the OCT 

probe, however, the pressure of the OCT probe exerted 

on the tissue may cause tissue deformation instead of 

translational shift in non-contact mode. The deformation-

produced displacements of scatterers in the tissue are not 

spatially homogeneous, and therefore phase 

compensation should be used in a depth-dependent 

manner using a sliding averaging window [20]: 
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Fig. 1 Schematically shown bulk motion compensation in case of non-contact mode. Red rectangles represent A-scans 

and blue circles – blood vessel. Depth-averaged phase is adjusted for subsequent A-scans, but for the local motions within 

the vessel cross-section the phase variations significantly differ from the averaged phase-variation values, such that they 

are preserved and can be singled out using any angiographic method. 
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Fig. 2 Simulated OCT images: (a) structural B-scan before deformation, (b) B-scan after deformation (axial strain is 

7.5×10–4). Both B-scans are very similar, so that blood vessels cross sections are not visually distinguishable in the 

structural images. (c) initial pixel-to-pixel inter-scan phase difference; (d) phase difference given by Eq. (5) after the 

described phase compensation. In both pictures three blood vessel cross sections appear as noisy regions due to the 

random motions of scatterers in the blood flow. The scale bar is 0.2 mm in all panels.  

Such that the corrected complex-valued amplitude of 

the compared B-scan takes the form: 

'

2 2( , ) ( , ) exp( φ( , )),B z x B z x i z x


   (4) 

where z and x are indexes of a pixel in axial and lateral 

directions, respectively; Zp and Xp are sizes of the sliding 

window in pixels; B1 is the reference B-scan, B2 is the 

deformed B-scan, '

2B  is B2 after phase correction. The 

hat symbol ^ over phase variation Δφ indicates that it is 

averaged over the sliding window. The averaging 

window size should be larger than the characteristic scale 

of the point-spread function, but at least several times 

smaller than the characteristic scale of inhomogeneity of 

the deformation-induced displacements. For 

visualization purpose we calculate the phase difference 

between the reference and compensated B-scans: 

 ' *

2 1φ '( , ) arg ( , ) ( , ) .z x B z x B z x   (5) 

Results obtained with this compensation method are 

presented in Figs. 2c and 2d showing the phase difference 

between a pair of simulated B-scans passing through 

cross sections of three vessels, in which the moving 

particles experience inter-scan displacements to imitate 

blood flow. 

An important point about the compensation of bulk 

motion should be mentioned. For translational masking 

motions (as in Ref. [23]), the phase variations for all 

compared scans can be compensated towards the first 

reference scan. However, for spatially-inhomogeneous 

strain-induced displacements, strain may monotonically 

accumulate in time, so that the phase difference between 

sufficiently distant scans may become rather large and 

even experience wrapping on a scale of a single pixel, so 

that the phase-difference distribution may become rather 

noisy and cannot be properly compensated. However, it 

should be recalled that for gradually shifted position of 

B-scans planes, the phase comparison actually makes 

sense only for a limited portion of B-scans that are 

partially overlapped. For even larger separation, the B-

scans visualize quite different tissue portions and bear 

independent information. Therefore, for singling out 

vessel cross sections with moving scatterers, the 

informative data are given by comparison of fairly small 

portions of partially overlapped scans. Therefore, it 

makes sense to compare phases only within such limited 

scan portions and perform inter-scan phase compensation 

to the central B-scan of every self-overlapping small 

pack. Both variants of choosing scan portions for phase-

variation compensations are schematically shown in 

Fig. 3. 

 

Fig. 3 Illustration of different approaches to phase 

compensation in terms of chosen reference B‑scan 

(colored in yellow). In panel (a) all the B-scans are phase-

compensated toward the first B-scan, in this case, OCTA 

image may suffer from cumulative strain; in (b) B-scans 

are compensated only in a small pack which is used for 

convolution with filtering function. This sliding phase-

variation compensation within self-overlapping scan 

packs eliminates the strain-cumulation issue, but the is 

more computationally demanding. 

Each of such packs of self-overlapping scans can be 

subjected to high-pass filtering, which can be 

conveniently made by performing convolution with a 

filtering function sliding along the entire pack as 

proposed in Ref. [20]. In this case, eventual cumulation 

of strain and possible phase-estimation errors are much 

smaller, which improves the quality of phase 

compensation and final OCTA image.  

This improvement for such sliding phase 

compensation is attained at the expense of a larger 

number of phase-comparison operations because roughly 
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N times more operations are required, where N is the 

length of a filtering window that covers portions of self-

overlapping scans. Now, after the discussion of the 

different approaches to compensation of the bulk-motion 

induced phase-variability along the time axis (illustrated 

in Fig. 3), we return again to the features of interframe 

compensation of depth-dependent motions illustrated in 

Fig. 2. This method is based on only phase compensation 

with a window sliding along the depth and lateral 

coordinates works rather well for sufficiently small 

strains that cause phase variations of only 1–3 periods 

over the scan depth (as in Fig. 2 in which 1.5 periods of 

phase-variation occur along the depth). However, for 

bigger strains, the quality of such phase compensation 

noticeably degrades as illustrated in Fig. 4 in which six 

periods of strain-induced phase-variation are shown. The 

compensation quality worsening in comparison with the 

example in Fig. 2 can be explained in the following way. 

Small strain leads to small displacements of scatterers 

and most of them do not leave their pixels. Therefore, we 

can neglect changes in amplitude distribution and the 

main effect of bulk motion is the small phase variation 

between B-scans. With increasing strain, more and more 

scatterers leave their pixels and at the same time the 

signal from scatterer(s) in a particular pixel gradually 

leaks to neighboring pixels. This leads to high 

decorrelation noise in which both phase and amplitude 

contributions become important.  

In view of this, to compensate bulk motions in case of 

larger strains we developed a new method which uses not 

only phase compensation but rather combined amplitude-

phase compensation allowing for a significant reduction 

of interframe decorrelation. This method is based on the 

Fourier-shift theorem and is described in the following 

section in detail. 

4 Bulk Motion Compensation Based of 

Fourier-Shift Procedures  

For understanding the principle of the proposed method 

let us consider a single A-scan first. Amplitude-phase 

compensation is based on the Fourier shift theorem: 

( ( )) ( ( )) .ik zFFT A z z FFT A z e     (6) 

Therefore, if we need to translationally shift an 

A-scan, it can be performed as: 

( ) ( ( ( )) ),ik z

shiftA z z IFFT FFT A z e    (7) 

where k is a wavenumber, ∆𝑧 is a required shift in an 

axial direction, FFT and IFFT – forward and inverse 

Fourier transforms.  

It should be emphasized that it is possible to shift the 

scan patterns with a subpixel accuracy using Eq. (7). If 

∆𝑧 is a multiple of a pixel size Hpx, then the shift is ideal 

(amplitude and phase do not change their values, just 

circularly shift) and if ∆𝑧 is not a multiple of Hpx, the 

complex amplitude somewhat changes as shown in the 

right column of Fig. 5. It is important to emphasize that 

the profile changes not because Fourier shift performs not 

good enough for subpixel shift but due to the properties 

of pixelated image formation. Indeed, let us consider a 

situation when scatterers themselves are translationally 

shifted by a fraction of a pixel. In this case, point spread 

function of each scatterer will be sampled at different 

points than before the shift, which leads to profile 

changes. Exactly the same situation occurs when we 

perform subpixel Fourier shift. This effect is illustrated 

in Fig. 5. 

 

Fig. 4 Simulated example of the phase difference 

between two subsequent B-scans in case of fairly big 

strain resulting in the six-period phase variation in the 

bottom region. In contrast to Fig. 2 where blood vessels 

are clearly visible, here big strain leads to high 

decorrelation noise, which masks the signal variability in 

blood vessel cross-sections. The strain value is 3×10–3. 

The scale bar is 0.2 mm in both panels. 

 

Fig. 5 Amplitude and phase of an A-scan before and after 

translational shift for different ∆z. For a shift by an 

integer number of pixel sizes (left column) the amplitude 

and phase profiles are simply displaced without changing 

the form; in contrast, a translational shift by a fractional 

number of pixels (right column) causes some changes in 

the phase and amplitude profiles, in other words, the 

initial and shifted profiles experience decorrelation.  

It should be emphasized that it is reasonable to apply 

the Fourier-shift theorem to the entire scan depth only in 

case when the scan shift is depth-independent. In case of 

depth-dependent shift of scatterers, A-scan can be 

divided into small parts, where the current shift ∆𝑧 is 
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fairly constant, and therefore, the Fourier shift theorem 

can be used with a reasonable accuracy. This idea is 

shown in Fig. 6. It should be emphasized that Eq. (7) 

leads to a circular shift of the entire array to which it is 

applied. Therefore, only the central part of the chosen 

Fourier-shifted fragment of the A-scan is not affected by 

this effect and can be used for reconstruction of the final 

shifted image.  

 

 

Fig. 6 Demonstration of the idea for use of Fourier shift 

theorem when required shift depends on the depth 

∆𝑧=∆𝑧(z). A-scan is divided into parts where ∆𝑧 ≈ const 

and Fourier shift is applicable. The final image is 

composed of these partial A-scans to which a separate 

shift was applied. 

To demonstrate the method possibilities, two A-scans 

before and after deformation with constant strain along 

all depth were generated (see Fig. 7a). In this example the 

uniform strain is s = 3×10–3 and the displacement is zero 

at the interface of the OCT probe and tissue at z = 0. The 

required shift z for depth z evidently is szz  . For 

such strain, the displacements of scatterers are essentially 

supra-wavelength within a significant part of the scan and 

near the bottom have a size of a pixel. Also change in the 

amplitude profile for the deformed A-scan is also visible. 

Fig. 7b shows the result of the application of the above-

described Fourier-shift procedure with the sliding 

window of 15 pixels in size shifted pixel by pixel along 

the deformed A-scan. After this procedure both profiles 

look much more alike but still slightly differ. The 

difference is caused by the fact that when shift is depth-

dependent, the used ∆𝑧 is only an approximation and shift 

cannot be performed ideally. Plus, in the real experiment 

difference will be somewhat higher because the required 

shift is not known and has to be estimated using the 

experimental OCT data. However, even though the 

difference is still present, the used Fourier-shift 

procedures significantly improve the quality of OCTA 

visualization as will be demonstrated in the next Figures. 

Now, when the principles of the depth-dependent 

Fourier-shift procedures are presented, the full sequence 

of steps of depth-dependent back-shifts to compensate 

deformation-induced bulk motions can be described as 

follows.  

1. The first step is the initial estimate of the smoothed 

phase difference φ ( , )
init

z x


  which coincides with the 

phase-variation φ( , )z x


  defined by Eq. (3). The vector-

averaged phase difference φ ( , )
init

z x


  is found using a 

sliding window. The sizes of the processing window 

(given by quantities pZ  and pX ) used here should be 

smaller than the characteristic scale of deformations but 

larger than the characteristic scales of the point spread 

function. Due to such averaging the fairly large-scale 

phase variations caused by translational and strain-

produced displacements can be well estimated and 

compensated, whereas smaller-scale variations in vessel 

cross sections will be retained after the compensation. 

For illustration, we also calculate the unaveraged 

phase difference: 

 *

1 2φ ( , ) arg ( , ) ( , ) ,init z x B z x B z x   (8) 

and compare it with the averaged φ ( , )
init

z x


  for the 

same simulated scans as in Fig. 4. Both unaveraged and 

averaged phase differences are shown in Fig. 8.  

 

 

Fig. 7 Compensation of deformation-induced depth-dependent displacements using the Fourier-shift procedures. Panel 

(a) shows amplitudes of the reference (black) and deformed (red) A-scans and (b) are the reference and deformed A-scans 

after depth-dependent back-shift. The zoomed insets show the difference/similarity of the compared A-scans in more 

detail. It is clear that after the back-shift, the two profiles differ much less.  
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Fig. 8 Visualization of phase difference between 

consecutive B-scans. Panel (a) is pixel-to-pixel 

unaveraged phase difference φ ( , )init z x  and (b) is phase 

difference φ ( , )
init

z x


  vector-averaged with a sliding 

window of 4×4 pixels in size. Comparison of (a) and (b) 

demonstrates that the decorrelation noise in the phase-

variation distribution is well suppressed, whereas the 

larger scale strain-induced phase variations are well 

captured. The scale bar is 0.2 mm in both panels.  

2. Based on the calculated smoothed phase difference 

we calculate the depth-dependent axial shift ),( xzz  

caused by the deformation. It can be performed in various 

ways, e.g., in the most simple case it is done by 

commonly used unwrap procedure: 

0( , ) φ ( , ) / 2 .initz z x unwrap z x k
 

   
 

 (9) 

3. Then we perform the described above Fourier shift 

using the calculated Δz for each A-scan separately using 

Eq. (7), so that the back-shifted scan 2 _ shiftB  is obtained 

as a result. It should be emphasized that this shift leads 

only to a shift of the image, but not scatterers themselves. 

This means that although the image of scatterers is 

shifted to its “original” position before deformation, its 

phase corresponds to the deformed position. That means 

that althugh we moved the complex-valued image to its 

place before deformation, we still have to perform phase 

compensation. 

4. The next step is calculation of the vector-averaged 

phase difference once more, but this time between the 

reference scan 1B  and back-shifted deformed scan 

2 _ shiftB : 

1 1

1

' '

*

2 _

 ( ', ')
φ ( , ) arg .

( ', ')

z Zp x Xp

z z x xfin

shift

B z x
z x

B z x

   



 

 
 

   
  

 
 (10) 

Again, just for comparison we also calculate the 

unaveraged phase difference: 

 *

1 2 _φ ( , ) arg ( , ) ( , ) .fin shiftz x B z x B z x   (11) 

It is important to emphasize that the above described 

procedures based on the Fourier shift lead to a significant 

decrease in the decorrelation noise and, consequently, to 

smaller amplitude-phase differences between 

consecutive scans. This effect is shown in Fig. 9. 

 
Fig. 9 Comparison of the phase differences before and 

after Fourier back-shift for the same simulated scans as 

in Figs. 4 and 8. Panel (a) is pixel-to-pixel phase 

difference before the shift, (b) is pixel-to-pixel phase 

difference after the shift defined by Eq. (11), and (c) is 

the phase difference between the reference 1B  and back-

shifted scan shiftB _2  found with averaging given by 

Eq. (10). Comparison of (a) and (b) clearly shows that the 

proposed Fourier shifting results in significantly smaller 

decorrelation noise which is further reduced by the 

moderate averaging as shown (c). The scale bar is 

0.2 mm in all panels.  

5. The last step is phase compensation for the 

deformed and back-shifted B-scan: 

2 _ 2 _' ( , ) ( , )

exp φ ( , ) .

shift shift

fin

B z x B z x

i z x


 

 
  

 

 (12) 

Fig. 10 shows the result of the phase compensation 

given by Eq. (12) in comparison with the phase 

compensation given by Eqs. (3) and (4) as shown in 

Fig. (4) in which the back-shift was not used and 

appreciable decorrelation noise was retained. 

 

Fig. 10 Comparison of the phase difference between  

B-scans after compensation: phase (a) and shift (b) 

compensation methods. The proposed method has a 

much smaller decorrelation noise. The same pair of 

simulated scans as in Figs. (4), (8), and (9) is used. The 

scale bar is 0.2 mm in both panels. 
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5 Results of Angiographic Processing of 

Simulated 3D Data  

For comparison of the bulk motion compensation using 

the phase-only correction and the proposed method based 

on Fourier-shift, we simulated a 3D stack of B-scans with 

a channel of moving scatterers imitating a vessel. This 

vessel has a diameter of 46 μm and is oriented along the 

volume diagonal as schematically shown in Fig. 11. The 

assumed in the simulations rate of obtaining B-scans is 

20 Hz (as for the OCT system used in Ref. [20] with the 

other typical parameters described in Section 2). 

Erythrocytes are modeled as discrete scatterers flowing 

in one direction and simultaneously performing 

Brownian motion (a detailed description of such 

simulations can be found in Ref. [24]). The regular 

velocity of moving scatterers was chosen to be 17.4 μm/s 

which is quite realistic for small vessels. The size of the 

image is 1000×400×270 μm in z, x and y directions, 

respectively. 

 

Fig. 11 Schematic image of the simulated 3D volume. 

The diagonal cylinder represents the blood vessel filled 

with erythrocytes. The rest of the volume also contains 

scatterers imitating the “solid” tissue but these scatterers 

are not shown. They have the same concentration and 

scattering strength as scatterers inside the vessel.  

In contact mode the pressure produced by the OCT 

probe results in appearance of inter-frame strain. It was 

simulated as inter-B-scan strains with randomly 

fluctuating amplitude with a Gaussian distribution with 

zero average and standard deviation STD = 2×10–3. 

Phase compensation was performed with a 6x6 sliding 

window, the size of a filtering window in the slow-

scanning direction was chosen equal to 7. 

The results obtained with the convolutional filtering 

procedure proposed in Ref. [20] combined with the 

above-described phase and shift compensations are 

shown in Fig. 12. They are represented in the 

traditionally used en face form as maximum amplitude 

projection of the high-pass filtered 3D data onto the 

horizontal plane. It is clearly seen that images using the 

proposed compensation method have much fewer bulk 

motion-induced artefacts. One of the main advantages of 

using simulated data for the development of new signal 

processing methods is that all the parameters of the 

simulation are known including the position of the vessel, 

flow velocity, intensity of bulk motions, etc. Therefore, 

we can reliably quantitatively compare the two 

compensation methods in highly controllable conditions.  

To quantitatively compare the results of different 

compensation methods we calculate the ratio of the mean 

signal inside the vessel to the mean signal outside the 

vessel: 

/
α .

/

px

vessel vessel

px

background background

S N

S N





 (13) 

Here, vesselS  is the amplitude of each of the pixels 

belonging to the vessel in the angiographic en face 

image; similarly backgroundS  denoted the amplitude of 

each pixel outside the vessel; the amount of pixels inside 

and outside the vessel are px
backgroundN  and px

backgroundN , 

respectively. The summation of the OCTA signals in 

Eq. (13) is performed over the total number of pixels in 

the image. For the en face OCTA images shown in 

Fig. 12, the so-found contrast is α = 5.32 for phase 

compensation (Fig. 12c) and α = 16.63 for the image 

obtained with the Fourier shift (Fig. 12c). 

Although in Fig. 12 it was supposed that there are no 

measurement noises other than decorrelation noise, the 

used simulation method also allows one to readily imitate 

the noise of the receiving array by adding complex-

valued random values to every pixel. For testing of the 

performance of the two compensation methods in the 

presence of reception noise we calculated contrast α after 

adding various noise levels in the simulated scans. The 

results presented in Table 1 demonstrate that even for 

rather low signal-to-noise ratios (SNR), the Fourier-shift 

compensation enables a notably higher contrast. Bearing 

in mind that typical OCT devices have the reception 

noise level above 30 dB, significant image quality 

improvement can be expected for real data. 

Table 1 Dependence of the angiographic-image contrast on SNR. 

SNR, dB no noise 40 35 30 25 20 

α, phase compensation 5.32 5.31 5.29 5.23 5.06 4.66 

α, shift compensation 16.63 16.42 15.93 14.65 12.00 8.44 
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Fig. 12 Comparison of OCTA images obtained with 

high-pass filtering using phase (left part) and Fourier-

shift (right part) compensations. Panels (a) and (b) are 

examples of in-depth images; (c) and (d) are en face 

projections. The proposed Fourier-shift compensation 

performs noticeably better: there are much fewer 

artefacts in the background area. The scale bar is 

0.05 mm in all panels. 

6 Conclusions  

Here, we present a new method for bulk motion 

compensation to improve the quality of OCT-based 

angiographic visualization in the presence of fairly 

intense depth-dependent and laterally inhomogeneous 

strain-induced masking displacements of scatterers in the 

“solid” tissue, which may occur in the contact-mode 

angiographic examinations. Although the phase of the 

pixels is much more sensitive than amplitude to small 

displacements of scatterers, for elevated strain level, 

displacements may become so big that scatterers 

experience essentially supra-wavelength displacements 

and may even leave their pixels. This may appreciably 

affect amplitude profiles of A-scans and lead to high 

decorrelation noise comprising both phase and amplitude 

contributions. We present a method intended to 

significantly reduce such masking strain-induced 

decorrelation by using the depth-dependent back-shift of 

scatterers based on the Fourier-shift theorem. Such a 

compensation method allows one to back-shift an image 

to its original place before deformation. The proposed 

procedures lead to lower inter-scan decorrelation, better 

phase compensation, and therefore, lower signal 

variability outside blood vessels while preserving high 

variability inside. A comparison of the earlier used 

phase-only compensation with the proposed method uses 

simulated data enabling highly controllable conditions, 

which is often unachievable in real experiments. The 

performed comparison shows a much better quality of 

OCTA image and a significantly higher contrast between 

the blood vessel and background deformed tissue. It 

should be emphasized that although the proposed method 

was tested only on the high-pass filtering method, due to 

amplitude-phase compensation it can be applicable for 

any angiographic visualization approach based on 

amplitude or phase or complex signal variability 

estimation. Thus, the new masking motion compensation 

method looks very promising for application to patients, 

for which utilization of various immobilizing devices is 

unacceptable and contact-mode OCTA is a realistic 

acceptable alternative. However, because of residual 

masking tissue motions obtaining of good-quality 

angiographic images remains challenging. The proposed 

improved bulk-motion compensation method will be 

tested on experimental data in the nearest future. 
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