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In this study, an efficient analytical method called the Sumudu Iterative Method (SIM) is introduced to obtain the solutions for the
nonlinear delay differential equation (NDDE). This technique is a mixture of the Sumudu transform method and the new iterative
method. The Sumudu transform method is used in this approach to solve the equation’s linear portion, and the new iterative
method’s successive iterative producers are used to solve the equation’s nonlinear portion. Some basic properties and theorems
which help us to solve the governing problem using the suggested approach are revised. The benefit of this approach is that it
solves the equations directly and reliably, without the prerequisite for perturbations or linearization or extensive computer
labor. Five sample instances from the DDEs are given to confirm the method’s reliability and effectiveness, and the outcomes
are compared with the exact solution with the assistance of tables and graphs after taking the sum of the first eight iterations
of the approximate solution. Furthermore, the findings indicate that the recommended strategy is encouraging for solving
other types of nonlinear delay differential equations.

1. Introduction

The more general kind of differential equations (DEs) is called
functional differential equations (FDEs), as well as the delay
differential equation (DDE) is the simplest and may be the
most natural class of FDEs [1]. DDEs constitute a large and
significant class of dynamical systems. Time delays are natural
components of the dynamic processes of biology, ecology,
physiology, economics, epidemiology, and mechanics, and so
a genuinemodel of these processes must comprise time delays.
DDEs are a form of DEs in which the derivative of the
unknown function at a specific period is provided in terms
of values of the function at past periods. Announcing delays
in models enriches the vitality of these models and allows a
perfect interpretation of actual occurrences [2–4]. DDEs arise
frequently in various physical occurrences. To be precise, they
are vital once ordinary differential equation- (ODE-) based
models are ineffective. In disparate ODEs, where preliminary
conditions are stated at the initial point, DDEs need the his-
tory of the system over the delayed intervals which are then

provided as preliminary conditions. DDEs are infinite-
dimensional and challenging to appraise since delay terms
exist in the model [5]. Hence, solving DDEs is an important
area of investigation for different scientists.

Recently, many researchers established and investigated
various analytical and numerical methods to obtain approxi-
mate/exact solutions for nonlinear DEs as well as DDEs
[6–8]. The variational iteration method (VIM) was employed
by the authors of the publication [9–12] to discover a rough
solution to nonlinear DDEs. To solve models of delayed
vector-borne illnesses and delayed protein degradation, [13]
incorporated the differential transform technique, Tarig trans-
formation method, and Padè approximation in 2022. The
Padè approximation is applied to this method to broaden
the approximation solutions’ convergence domain. Kumar
and Methi [14] obtained the numerical result of some NDDEs
with the support of Banach contraction method (BCM). To
demonstrate that the suggested technique is fit for solving
NDDEs, they also offered the numerical results, convergence
theorem, and error analysis for various DDEs. In the
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publication [15], the authors debate an inverse problem for the
NDDE that consists of approximating a solution by defining
the beginning moment and delay parameter based on the
experimental data. The inverse issue is seen as a nonlinear
optimal control problem using the stated approach, for which
the requisite criteria of optimality are established and shown.
A method based on a better parallel evolutionary algorithm
is used to solve the derived optimum control issue. In his
publication [16], Familua proposes a straightforward method
for solving specific second-order DDEs numerically without
reducing them to systems of lower orders. Power series and
an exponential function were combined to create the
approaches utilizing a collocation approach. The first two grid
points interpolate the approximation basis functions, and both
grid and off-grid points collocate them. Additionally, the
author combined the generated schemes and their derivatives
to create block techniques, which enable the simultaneous
direct solution of second-order DDEs without the laborious
requirement of building separate predictors. To analyze the
semianalytical solution of the DDEs, the writers of the effort
[17] construct a novel technique called theMohand homotopy
perturbation transform method (MHPTM). This approach
combines the Mohand transform with the homotopy pertur-
bationmethod (HPTM). A novel class of neutral FDDEs using
the generalized ψ-Caputo derivative on a partially ordered
Banach space is investigated by the authors of the study [18].
The Dhage approach and the Banach contraction standard
are used to demonstrate the presence and uniqueness of the
solutions to the specified boundary value issue. The authors
of the paper [19] considered a class of singularly perturbed
advanced DDEs of convection-diffusion type. They use finite
and hybrid difference schemes to solve the problem on piece-
wise Shishkin mesh. Readers can consult references [5, 20–24]
for more work on DDEs that are linked to their interests.

Several intellectuals have created a variety of analytical
integral transform techniques for precise and approximated
answers during the past few years, including the Laplace
transform method [25, 26], Shehu transform method [27,
28], Aboodh transform method [22], Sumudu transform
method [29], Elzaki transform method [30], and Mohand
transform method [17]. The Sumudu transform method is
an integral like the Laplace transform method, introduced
in the early 1990s by Watugala [31] to solve DEs and control
engineering problems. This method converts a linear DE to
an algebraic equation that can be resolved by consuming for-
mal algebraic methods. The initial DE can then be resolved
by employing the inverse Sumudu transformations. When
matched to other methods, the Sumudu transform technique
has the advantage of providing an accurate result quickly
and without making any restricting assumptions about the
result (see [29]). Unfortunately, this transform fails to crack
nonlinear partial DEs, unlike the other integral transforms
[32]. In these circumstances, the Sumudu transform method
is frequently recycled with other well-used techniques such
as the Adomian decomposition method (ADM), HPM,
VIM, and the new iterative method [29, 33]. Alternatively,
we may frequently employ integral transform techniques
such as Laplace, Elzaki, and Shehu in place of the Sumudu
transform method. Likewise, techniques like HPM, VIM,

and ADM may be employed in place of the new iterative
procedure. The HPM, also known as the He-Laplace tech-
nique, was developed by Mishra and Tripathi [34] and com-
bines the Laplace transform with He’s polynomials to solve
DDEs, which have a variety of applications in physics, digital
image processing, signal processing, and applied disciplines.
With the usage of the Laplace transform homotopy pertur-
bation approach (He-Laplace method), the writers of the
study [35] were able to acquire the approximate analytical
solutions of four distinct kinds of conformable partial DEs.
We encourage readers to look at the descriptions of a few
integral transforms in Table 1 [36].

The major goal of this study is to suggest the Sumudu
Iterative Method (SIM), a trustworthy analytical technique
for obtaining precise answers to NDDEs. This strategy com-
bines the Sumudu transform method with an iterative
method, two potent approaches. An iterative method (IM)
has been presented by Daftardar-Gejji and Jafari to solve lin-
ear and nonlinear functional equations [37–40]. The IM has
been effectively applied in many kinds of investigation to
solve some linear and nonlinear PDEs and ODEs, NDDEs,
higher-order integro-DEs, two-dimensional nonlinear Sine
Gordon equation (NLSGE), and Korteweg-de Vries equa-
tions [25, 41–43]. The author of the study [29] successfully
integrated the double Sumudu transform with the iterative
approach to produce an approximate analytical answer to
the one-dimensional coupled NLSGE, which cannot be
solved by utilizing the double Sumudu transform alone. In
this approach, the linear part of the problem was handled

Table 1: Some known integral transforms [17, 22, 36].

Integral transform Expression

Elzaki transform E f tð Þ½ � = u
ð∞
0
e− t/uð Þ f tð Þdt

Natural transform N f tð Þ½ � =
ð∞
0
e− t/uð Þ f stð Þdt

Shehu transform S f tð Þ½ � =
ð∞
0
e− st/uð Þ f tð Þdt

Sawi transform S f tð Þ½ � = 1/u2
ð∞
0
e− t/uð Þ f tð Þdt

Pourreza transform T f tð Þ½ � = u
ð∞
0
e−u

2t f tð Þdt

Ara transform T f tð Þ½ � = u
ð∞
0
et

n−1
e−ut f tð Þdt

Laplace transform L f tð Þ½ � =
ð∞
0
e−ut f tð Þdt

Sadik transform S f tð Þ½ � = 1/uβ
ð∞
0
e−u

βt f tð Þdt

Mohand transform M f tð Þ½ � = u2
ð∞
0
e−ut f tð Þdt

Mahgoub transform M f tð Þ½ � = u
ð∞
0
e−ut f tð Þdt

Aboodh transform A f tð Þ½ � = 1/u
ð∞
0
e−ut f tð Þdt
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utilizing the double Sumudu transform method, and the
nonlinear part through an additional iterative approach.
According to Deresse [26], recent research has been done
on the exact analytical solutions to the ð2 + 1Þ-dimensional
nonlinear conformable fractional telegraph equation utiliz-
ing the conformable fractional triple Laplace transform
approach in blend with the innovative iterative method. In
the specified technique, the new iterative method’s consecu-
tive iteration process is used to eliminate the equation’s non-
linear noise components, and one iteration yields the exact
answer. While the conformable fractional triple Laplace
transform method is reused to resolve the linear constituent
of the issue. To solve fractional-order Cauchy reaction-
diffusion equations (CRDEs) in a vision of conformable
derivative (CD), Rezapour et al. engaged the innovative iter-
ative technique in aggregation with the Shehu transform
scheme in their greatest latest publication [44].

The primary driving force behind the current study
endeavor is the fact that the amalgamation of the Sumudu
transform method and the new iterative SIM has not yet
been investigated to solve NDDEs in the literature. The lin-
ear DDE was the subject of other research projects as well.
This study work primarily focuses on NDDEs as a result,
which is our second reason for introducing the novel
approach SIM. The outcomes of the samples exhibit the
accuracy and potency of this method, which does not require
the imposition of any extra constraints to arrive at an analyt-
ical answer to the anticipated difficulties. It is a skilled
scheme for reducing the number of calculations while keep-
ing the answer more accurate and efficient.

In this work, we consider the following DDE in the form
[22]

dny tð Þ
dtn

+ p y tð Þð Þ +N y t − τð Þð Þ = f tð Þ, n = 1, 2, 3,⋯, ð1Þ

subject to

y kð Þ 0ð Þ = y0
k, ð2Þ

where dny/dtn is the derivative of y of order n, P is the linear
bounded operator, N is a nonlinear bounded operator, f ðtÞ
is a given continuous function, and y = yðtÞ.

The remaining parts of this paper are structured as fol-
lows: Section 2 presents the basic explanations and properties
of the Sumudu transform method. In Section 3, we clarify the
methodology of the new iterative method. Section 4 demon-
strates how SIM is pragmatic to the proposed problem DDE.
Section 5 is dedicated to illustrating the SIM to five problems.
In Section 6, we talk over the numerical results and illustrate
the accuracy and efficiency of the SIM. Lastly, concluding
remarks are outlined in Section 7.

2. Sumudu Transform Method

The definitions, characteristics, and theorems of the Sumudu
transform scheme that we employed in this work are offered
in this section (refer to [29, 45–52]).

Definition 1. For any real numbers t > 0, the function GðuÞ is
defined as the Sumudu transform of a function f ðtÞ which is
given by

S f tð Þf g =G uð Þ = 1
s

ð∞
0
e− t/uð Þ f tð Þdt = lim

τ⟶∞

ðτ
0
e− t/uð Þ f tð Þdt:

ð3Þ

Definition 2. The inverse Sumudu transform of a function
GðuÞ is denoted by the symbol S−1½GðuÞ� = f ðtÞ and is
defined by the Bromwich contour integral

S−1 G uð Þ½ � = f tð Þ = lim
β⟶∞

1
2πi

ðα+iβ
α−iβ

e t/uð ÞG uð Þdu: ð4Þ

2.1. Convergence Theorem of Sumudu Transform

Lemma 3. Let f ðtÞ be a continuous function. If the integral
1/u
Ð∞
0 eð−t/uÞ f ðtÞdt converges at u = u0, then the integral

converges for u < u0.

Theorem 4. Let n ≥ 1 and let GnðuÞ be the Sumudu trans-
forms of the function f ðnÞðtÞ, then

G1 uð Þ = S f ′ tð Þ
h i

= G uð Þ − f 0ð Þ
u

= G uð Þ
u

−
f 0ð Þ
u

,

G2 uð Þ = S f tð Þ½ � = G uð Þ − f 0ð Þ
u2

−
f ′ 0ð Þ
u

= G uð Þ
u2

−
f 0ð Þ
u2

−
f ′ 0ð Þ
u

,

:

:

:

Gn uð Þ = S f nð Þ tð Þ
h i

= G uð Þ
un

−
f 0ð Þ
un

−−
f ′ 0ð Þ
un−1

−:⋯−
f n−1ð Þ 0ð Þ

u
= G uð Þ

un
− 〠

n−1

k=0

f k 0ð Þ
un−k

:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð5Þ

2.2. Existence and Uniqueness of the Sumudu Transform
Method

Theorem 5 (existence). If f is an exponential order, then its
Sumudu transform S½ f ðtÞ ; u� = GðuÞ is given by

G uð Þ = 1
u

ð∞
−∞

e −t/uð Þ f tð Þdt, ð6Þ

where 1/u = ð1/ηÞ + ði/τÞ:

The defining integral for G exists at points 1/u = ð1/ηÞ +
ði/τÞ in right half plane 1/η > 1/k and 1/ζ > 1/L.

Theorem 6 (uniqueness). Letf ðtÞandgðtÞbe continuous func-
tions defined fort ≥ 0which have Sumudu transforms,FðuÞ
andGðuÞ, respectively. If FðuÞ = GðuÞ almost everywhere,
then f ðtÞ = gðtÞ, where u is a complex number.

See [45, 46] for the proof.
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2.3. Some Properties of Sumudu Transform

Property 7. Over the set of function A: A = fð f ðtÞj∃M, τ1,
τ2 > 0, j f ðtÞj <Mejtjτ j , if t ∈ ð−1Þj × ½0,∞ÞÞg, the Sumudu
transform is defined by

G uð Þ = S f tð Þð Þ =
ð∞
0
f uatð Þe−tdt, u ∈ −τ1, τ2ð Þ: ð7Þ

Property 8 (linearity property). Let f ðtÞ and gðtÞ be any two
functions whose Sumudu transforms exist. Then, for arbi-
trary constant a and b, we have

S af tð Þ + bg tð Þf g = aS f tð Þf g + bS g tð Þf g: ð8Þ

Proof. Using the definition of Sumudu transform and prop-
erty of integral, we have

S af tð Þ + bg tð Þ½ � =
ð∞
0

af utð Þ + bg utð Þ½ �e−tdt

= a
ð∞
0
f utð Þe−tdt + bg utð Þe−tdt

= aS f tð Þ½ � + bS g tð Þ½ �:

ð9Þ

Hence, the proof.

Property 9 (first scale preserving theorem). If S½ f ðtÞ� =GðuÞ,
then S½ f ðatÞ� =GðatÞ, where a is nonzero constant.

Proof. Let S½ f ðtÞ� =GðuÞ = Ð∞0 f ðutÞe−tdt, then

S f atð Þ½ � =
ð∞
0
f uatð Þe−tdt =G auð Þ: ð10Þ

Property 10 (first shifting theorem). If S½ f ðtÞ� =GðuÞ, then

S f tð ÞeatÂ Ã
= 1
1 − au

G
u

1 − au

� �
: ð11Þ

Property 11 (second shifting theorem). If S½ f ′ðtÞ� = G′ðuÞ,
then S½t f ′ðtÞ� = uG′ðuÞ.

3. The New Iterative Method (NIM)

Daftardar-Gejji and Jafari [38] have suggested a new itera-
tive method (NIM) for resolving nonlinear functional equa-
tions of the form

y = f +N yð Þ, ð12Þ

where f is a known function and N a nonlinear operator. In
this scheme, we assume that equation (12) has a series
answer of the form

y = 〠
∞

n=0
yn tð Þ: ð13Þ

The nonlinear operator N can be decomposed as

N 〠
∞

n=0
yn

 !
=N y0ð Þ + 〠

∞

n=1
N 〠

k

n=0
yn

 !
−N 〠

k−1

n=0
yn

 !( )
, k = 1, 2, 3,:⋯

ð14Þ

This implies that

N yð Þ =N y0ð Þ + N y0 + y1ð Þ −N y0ð Þ½ � + N y0 + y1 + y2ð Þ −N y0 + y1ð Þ½ �+:⋯
ð15Þ

Using equations (14) and (13) in equation (12), we
obtain

N 〠
∞

n=0
yn

 !
= f +N y0ð Þ + 〠

∞

n=1
N 〠

k

n=0
yn

 !
−N 〠

k−1

n=0
yn

 !( )
:

ð16Þ

From equation (16), we define the subsequent recurrence
relation:

y0 = f ,
y1 =N y0ð Þ,
y2 =N y0 + y1ð Þ −N y0ð Þ,
y3 =N y0 + y1 + y2ð Þ −N y0 + y1ð Þ,
:

:

:

yn =N y0 + y1 + y2+:⋯ +ynð Þ −N y0 + y1 + y2+⋯+yn−1ð Þ:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð17Þ

As a result, equation (12) is equivalent to

〠
∞

n=0
yn tð Þ = f + 〠

∞

n=1
yn tð Þ: ð18Þ

Therefore, the kth term approximate answer of equation
(1) is given by yðtÞ =∑k−1

n=0ynðtÞ = y0 + y1 + y2 + y3 +⋯ +
yk−1 = f +Nðy0Þ + ½Nðy0 + y1Þ −Nðy0Þ� + ½Nðy0 + y1 + y2Þ −
Nðy0 + y1Þ�+:⋯ (20)

3.1. Convergence of the New Iterative Method. This subsec-
tion offers the conditions for the convergence of the series
(20). For more details, attracted readers may refer to [53].

Theorem 12. If N is a continuously differentiable functional
in a neighborhood of y0 and kNðnÞðy0Þk = SupfNðnÞðy0Þðh1,
h2,⋯, hnÞ: khik ≤ 1, 1 ≤ i ≤ ng ≤ L, for each “n” and for some
real L > 0 and kyik ≤M < 1/e, i = 1, 2, 3,⋯, then the series
∑∞

i=0yi+1 is absolutely convergent and moreover,
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yi+1k k ≤ LMnen−1 e − 1ð Þ, n = 1, 2,:⋯ ð19Þ

Theorem 13. If N is a continuously differentiable functional
in a neighborhood of y0 and kNðnÞðy0Þk ≤M ≤ 1/e for all n,
then the series ∑∞

i=0yi+1 is absolutely convergent.

4. Sumudu Iterative Method (SIM)

In this section, the general form of the nth-order DDE (1)
with the initial value (2) is treated using the suggested
method SIM.

Step 1. Applying the Sumudu transform on both sides of
equation (1), we get

S
dny
dtn

� �
+ S P yð Þ½ � + S N y t − τð Þð Þ½ � = S f tð Þ½ �: ð20Þ

Step 2. Theorem4is used to obtain

S y tð Þð Þ
un

−
C

un−k
+ S P yð Þ½ � + S N y t − τð Þð Þ½ � = S f tð Þ½ �, ð21Þ

where C =∑n−1
k=0 f

kð0Þ:(24)
Replacing (24) into (21) and shortening, we obtain

S y tð Þ½ � = ukC − unS P yð Þ½ � + unS f tð Þ½ � − unS N yn t − τð Þð Þ½ �:
ð22Þ

Step 3. Applying the inverse Sumudu transform on both
sides of equation (22), we get

y tð Þ = S−1 ukC + unS f tð Þð Þ − unS p yð Þð Þ
h i

− S−1 unS N yn t − τð Þð Þð Þ½ �:

ð23Þ

Step 4. Now, we surprise the iterative method. We assume
that

yðtÞ =∑∞
n=0ynðtÞ is the solution of equation (1).

Step 5. Substituting equation (27) into equation (23), we
acquire

〠
∞

n=0
yn tð Þ = S−1 ukC + unS f tð Þð Þ − unS p yð Þð Þ

h i
− S−1 unS N 〠

∞

n=0
yn t − τð Þ

 ! !" #
:

ð24Þ

Step 6. Using (16), decompose the nonlinear
termNð∑∞

n=0ynðt − τÞÞin equation (24) as follows:

〠
∞

n=0
N y t − τð Þð Þ =N y0ð Þ + 〠

∞

n=1
N 〠

k

n=0
yn

 !
−N 〠

k−1

n=0
yn

 !( )
:

ð25Þ

Step 7. Replacing equation (25) in equation (24), we get

〠
∞

n=0
yn tð Þ = S−1 ukC + unS f tð Þð Þ − unS p yð Þð Þ

h i

− S−1 unS N y0ð Þ + 〠
∞

n=1
N 〠

k

n=0
yn

 !
−N 〠

k−1

n=0
yn

 !( ) !" #
:

ð26Þ

Step 8. Define the recurrence relation from the systems of
equation (26) as follows:

y0 tð Þ = S−1 ukC + unS f tð Þð Þ − unS p yð Þð Þ
h i

,

y1 tð Þ = −S−1 unS N y0ð Þð Þ½ �,
:

:

:

yn+1 tð Þ = −S−1 unS 〠
∞

n=1
N 〠

k

n=0
yn

 !
−N 〠

k−1

n=0
yn

 !( ) !" #
, n ≥ 1:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð27Þ

Therefore, in truncated series form, the approximate
analytical solution of the DDE (1) is given by

y tð Þ = lim
N⟶∞

〠
N

m=0
ym tð Þ = y0 + y1 + y2 + y3+:⋯ ð28Þ

5. Illustrative Examples

In this part, four nonlinear DDEs are used to demonstrate
the effectiveness and validity of the SIM.

Example 1 (see [44]). Consider a first-order nonlinear DDE:

d
dt

y tð Þ = 1 − 2y2 t
2

� �
, ð29Þ

subject to the initial condition

y 0ð Þ = 0: ð30Þ

The analytical solution is given by yðtÞ = sin t:.

Solution: taking the Sumudu transform on both sides of
equation (29), we get

G uð Þ
u

−
y 0ð Þ
u

= S 1½ � − S 2y2 t
2

� �� �
: ð31Þ

Taking the place of equation (30) into equation (29), we
achieve

G uð Þ = u − uS 2y2 t
2

� �� �
: ð32Þ
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Subsequently, taking the inverse Sumudu transform of
equation (32) implies that

S−1 G uð Þ½ � = S−1 u½ � − S−1 uS 2y2 t
2

� �� �� �
: ð33Þ

By using the properties of Sumudu transforms listed in
Table 2, equation (33) becomes

y tð Þ = t − S−1 uS 2y2 t
2

� �� �� �
: ð34Þ

Now, applying the new iterative method to equation (34)
in a vision of equations (27)–(31), we attain the components
of the solution as follows:

y0 tð Þ = t,

y0
t
2

� �
= t
2 ,

y1 tð Þ = −S−1 uS 2y02
t
2

� �� �� �
= −2S−1 uS

t2

4

� �� �

= −S−1 u u2
À ÁÂ Ã

= −S−1 u3
À Á

= −
t3

6 = −
t3

3 !:

ð35Þ

Hence, y1ðtÞ = −ðt3/3!Þ and y1ðt/2Þ = −ðt3/48Þ:

y2 tð Þ =N y0
t
2

� �
+ y1

t
2

� �� �
−N y0

t
2

� �� �

= −2S−1 uS
t
2 −

t3

48

� �2
−

t
2

� �2
" #" #

= −2S−1 uS
t2

4 −
t4

48 + t6

2,304 −
t2

4

� �� �

= −2S−1 uS −
t4

48 + t6

2,304

� �� �
= −S−1 u −u4 + 6!u6

1152

� �� �
:

ð36Þ

Therefore,

y2 tð Þ = −S−1 −u5 + 6!u7
1152

� �
= t5

5! −
t7

8064&y2
t
2

� �
= t5

3840 −
t7

1032192 ,

y3 tð Þ =N y0
t
2

� �
+ y1

t
2

� �
+ y2

t
2

� �� �

−N y0
t
2

� �
+ y1

t
2

� �� �

= −2S−1 uS
t
2 −

t3

48 + t5

3840 −
t7

1032192

� �2
−

t
2 −

t3

48

� �2" #" #

= −2S−1 uS
t6

3840 −
12:2t8
1032192 + 2:68t10

24772608 −
t12

1981808640 + t14

1065420324864

� �� �

= −
t7

1920 + 6:1t9
258048 −

0:64t11
3096576 + t13

990904320 −
t15

532710162432 :

ð37Þ

Likewise, we can obtain the leftover values by means of
the recurrence relation yn+1ðtÞ = −2S−1½uSð∑∞

n=1fNð∑k
n=0yn

2

ðt/2ÞÞ −Nð∑k−1
n=0yn

2ðt/2ÞÞgÞ�, n ≥ 1:.
Now, in vision of (28), the solution of Example 1 is

y tð Þ = y0 tð Þ + y1 tð Þ + y2 tð Þ+⋯ = t −
t3

6 + t5

120 −
1:6t7
4032 + 6:1t9

258048

−
0:64t11
3096576 + t13

990904320 −
t15

532710162432 +:⋯

ð38Þ

Example 2. Consider the following nonlinear second-order
DDE [23]:

d2y tð Þ
dt2

= −y tð Þ + 5y2 t
2

� �
, t ≥ 0, ð39Þ

with initial condition

y 0ð Þ = 1,
dy 0ð Þ
dt

= −2:
ð40Þ

The analytical solution is given by yðtÞ = e−2t :.
Solution: taking the Sumudu transform on both sides of

equation (39), we get

G uð Þ − y 0ð Þ
u2

−
y′ 0ð Þ
u

= S −y tð Þ + 5y2 t
2

� �� �
: ð41Þ

Replacing equation (40) into equation (39), we get

G uð Þ = 1 − 2u + u2S −y tð Þ + 5y2 t
2

� �� �
: ð42Þ

Table 2: Standard Sumudu transform for some special
functions [52].

f tð Þ G uð Þ = S f tð Þð Þ
1 1
tn n!un

tneat n!un/ 1 − auð Þn+1
sin at au/1 + a2u2

cos at 1/1 + a2u2

sinh at au/1 − a2u2

cosh at 1/1 − a2u2

ect f atð Þ 1/1 − cuð ÞG au/1 − cuð Þ
H t − að Þ e−a/u

H t − að Þf t − að Þ e−a/uG uð Þ
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Subsequently, taking the inverse Sumudu transform of
equation (42) suggests that

S−1 G uð Þ½ � = S−1 1 − 2u + u2S −y tð Þ + 5y2 t
2

� �� �� �
: ð43Þ

By using the properties of Sumudu transforms listed in
Table 2, equation (43) becomes

y tð Þ = 1 − 2t + S−1 u2S −y tð Þ + 5y2 t
2

� �� �� �
: ð44Þ

Now, applying the new iterative method to equation (44)
in the opinion of equations (27)–(31), we achieve the com-
ponents of the answer as follows:

y0 tð Þ = 1 − 2t,

y0
t
2

� �
= 1 − 2 t

2

� �
= 1 − t,

y1 tð Þ = S−1 u2S −y0 tð Þ + 5y02
t
2

� �� �� �
= S−1 u2S − 1 − 2tð Þ + 5 1 − tð Þ2Â ÃÂ ÃÂ Ã
= S−1 u2 −1 + 2u + 5 1 − 2u + 2u2

Â ÃÂ ÃÂ Ã
= S−1 −u2 + 2u3

Â Ã
+ 5S−1 u2 − 2u3 + 2u4

Â Ã
:

ð45Þ

As a result,

y1 tð Þ = −t2

2 + t3

3 + 5 t2

2 −
t3

3 + t4

12

� �
,

y1
t
2

� �
= t2

2 −
t3

3 + 5t4
192 :y2 tð Þ = −y1 tð Þ +N y0

t
2

� �
+ y1

t
2

� �� �
−N y0

t
2

� �� �
,

y2 tð Þ = S−1 u2S −y1 tð Þ½ �Â Ã
+ 5S−1 u2S 1 − t + t2

2 −
t3

3 + 5t4
192

� �2
− 1 − tð Þ2

" #" #
= S−1 u2S − 2t2 − 4t3

3 + 5t4
12

� �� �� �

+ 5S−1 u2S t2 −
2t3
3 + 29t4

96 −
t5

3 + 79t6
576 −

10t7
576 + 25t8

36864

� �� �
⇒ y2 tð Þ = −t4

6 + t5

15 −
t6

72

+ 5 t4

12 −
t5

12 + 29t6
2880 −

t7

126 + 79t8
32256 −

25t9
10368 + 10t10

1327104

� �
,

y2
t
2

� �
= −t4

96 + t5

480 −
t6

4608 + 5 t4

192 −
t5

384 + 29t6
184320 −

t7

16128 + 79t8
8257536 −

25t9
5308416 + 10t10

1358954496

� �
:

y3 tð Þ = −y2 tð Þ +N y0
t
2

� �
+ y1

t
2

� �
+ y2

t
2

� �� �
−N y0

t
2

� �
+ y1

t
2

� �� �

= S−1 u2S −
−t4

6 + t5

15 −
t6

72 + 5 t4

12 −
t5

12 + 29t6
2880 −

t7

126 + 79t8
32256 −

25t9
10368 + 10t10

1327104

� �� �� �� �

+ 5S−1 u2S

1 − t + t2

2 −
t3

3 + 5t4
192 + −t4

96 + t5

480 −
t6

4608 + 5

t4

192 −
t5

384 + 29t6
184320 −

t7

16128 + 79t8
8257536

−
25t9

5308416 + 10t10
1358954496

0
BBB@

1
CCCA

0
BBB@

1
CCCA

2

− 1 − t + t2

2 −
t3

3 + 5t4
192

� �2

2
6666666664

3
7777777775

2
6666666664

3
7777777775
:

ð46Þ
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Similarly, we can obtain the continuing values by using
the recurrence relation.

yn+1 tð Þ = S−1 u2S −yn tð Þð ÞÂ Ã
+ 5S−1 u2S 〠

∞

n=1
N 〠

k

n=0
yn

2 t
2

� � !( "

−N 〠
k−1

n=0
yn

2 t
2

� � !)!#
, n ≥ 1:

ð47Þ

Now, in sight of (28), the solution of Example 2 is

y tð Þ = y0 tð Þ + y1 tð Þ + y2 tð Þ + y3 tð Þ+⋯ = 1 − 2t + 2t2 − 4t3
3

+ 2t4
3 −

7t5
20 + 21t6

576 −
5t7
126 + 395t8

32256 −
125t9
10368

+ 50t10
1327104 +:⋯

ð48Þ

Example 3. Consider the following nonlinear second-order
DDE [24]:

d2y tð Þ
dt2

= y2
t
2

� �
, t ≥ 0, ð49Þ

with initial condition

y 0ð Þ = 1,
dy 0ð Þ
dt

= 1:
ð50Þ

The analytical solution is given by yðtÞ = et .
Solution: taking the Sumudu transform on both sides of

equation (49), we acquire

G uð Þ − y 0ð Þ
u2

−
y′ 0ð Þ
u

= S y2
t
2

� �� �
: ð51Þ

Replacing equation (50) into equation (49), we get

G uð Þ = 1 + u + u2S y2
t
2

� �� �
: ð52Þ

Consequently, taking the inverse Sumudu transform of
equation (52) implies that

S−1 G uð Þ½ � = S−1 1 + u + u2S y2
t
2

� �� �� �
: ð53Þ

By using the properties of Sumudu transforms listed in
Table 2, equation (53) becomes

y tð Þ = 1 + t + S−1 u2S y2
t
2

� �� �� �
: ð54Þ

Now, applying the new iterative method to equation (54)
in the understanding of equations (27)–(31), we attain the
components of the answer as follows:

y0 tð Þ = 1 + t,

y0
t
2

� �
= 1 + t

2 ,

y1 tð Þ = S−1 u2S y0
2 t

2

� �� �� �
,

y1 tð Þ = S−1 u2S 1 + t
2

� �2
" #" #

= S−1 u2S 1 + t + t2

4

� �� �

= S−1 u2 1 + u + u2

2

� �� �
= S−1 u2 + u3 + u4

2

� �

= t2

2 + t3

6 + t4

48 and y1
t
2

� �
= t2

8 + t3

48 + t4

768 ,

y2 tð Þ =N y0
t
2

� �
+ y1

t
2

� �� �
−N y0

t
2

� �� �

= S−1 u2S 1 + t
2 + t2

8 + t3

48 + t4

768

� �2
− 1 + t

2

� �2
" #" #

= S−1 u2S
t2

4 + t3

6 + 5t4
128 + 5t5

768 + 7t6
9216 + t7

18432

��

+ t8

589824

��
= S−1 u2

u2

2 + u3 + 15u4
16 + 25u5

32

��

+ 35u6
64 + 35u7

128 + 35u8
512

��
= S−1

u4

2 + u5 + 15u6
16

�

+ 25u7
32 + 35u8

64 + 35u9
128 + 35u10

512

�
= t4

48 + t5

120

+ t6

768 + 10t7
64512 + t8

73728 + t9

1327104 + t10

53084160 ,

y2
t
2

� �
= t4

768 + t5

3840 + t6

49152 + 10t7
8257536 + t8

18874368

+ t9

679477248 + t10

54358180000

= S−1 u2S
1 + t

2 + t2

8 + t3

48 + t4

768 + t4

768 + t5

3840 + t6

49152 + 10t7
8257536

+ t8

18874368 + t9

679477248 + t10

54358180000

0
BBB@

1
CCCA

22
6664

2
6664

− 1 + t
2 + t2

8 + t3

48 + t4

768

� �2##
:

ð55Þ

Similarly, we can get the continuing values by consum-
ing the recurrence relation

yn+1 tð Þ = S−1 u2S 〠
∞

n=1
N 〠

k

n=0
yn

2 t
2

� � !
−N 〠

k−1

n=0
yn

2 t
2

� � !( ) !" #
, n ≥ 1:

ð56Þ
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Now, in vision of (28), the solution of Example 3 is

y tð Þ = y0 tð Þ + y1 tð Þ + y2 tð Þ + y3 tð Þ+⋯

= 1 + t + t2

2 + t3

6 + t4

24 + t5

120 + t6

768 + 10t7
64512 + t8

73728

+ t9

1327104 + t10

53084160 +:⋯

ð57Þ

Example 4. Consider the following nonlinear first-order
DDE [24]:

d
dt

y tð Þ − 2ty4 t
2

� �
= 0, t ≥ 0, ð58Þ

with initial condition

y 0ð Þ = 1: ð59Þ

The analytical solution is given by yðtÞ = et
2
.

Solution: taking the Sumudu transform on both sides of
equation (58), we get

G uð Þ − y 0ð Þ
u

= S 2ty4 t
2

� �� �
: ð60Þ

Substituting equation (59) into equation (58), we get

G uð Þ = 1 + uS 2ty4 t
2

� �� �
: ð61Þ

Subsequently, taking the inverse Sumudu transform of
equation (61) implies that

S−1 G uð Þ½ � = S−1 1 + uS 2ty4 t
2

� �� �� �
: ð62Þ

By using the properties of Sumudu transforms listed in
Table 2, equation (62) becomes

y tð Þ = 1 + S−1 uS 2ty4 t
2

� �� �� �
: ð63Þ

Now, applying the new iterative method to equation (63)
in the opinion of equations (27)–(31), we acquire the com-
ponents of the solution as follows:

y0 tð Þ = 1,

y0
t
2

� �
= 1,

y1 tð Þ = S−1 uS 2ty04
t
2

� �� �� �
= S−1 uS 2t 1ð Þ4Â ÃÂ Ã

= S−1 uS 2t½ �½ �

= S−1 u 2uð Þ½ � = S−1 2u2
Â Ã

= t2:

ð64Þ

Hence, y1ðtÞ = t2 and y1ðt/2Þ = t2/4.

y2 tð Þ =N y0
t
2

� �
+ y1

t
2

� �� �
−N y0

t
2

� �� �
,

y2 tð Þ = S−1 uS 2t 1 + t2

4

� �4
− 1ð Þ4

 !" #" #

= S−1 uS 2t 1 + t2 + 3t4
8 + t6

16 + t8

256 − 1ð Þ
� �� �� �

= S−1 uS 2t t2 + 3t4
8 + t6

16 + t8

256

� �� �� �

= S−1 uS 2t3 + 3t5
4 + t7

8 + t9

128

� �� �
= S−1 u 12u3 + 90u5 + 630u7 + 2835u9

Â ÃÂ Ã
= S−1 12u4 + 90u6 + 630u8 + 2835u10

Â Ã
= t4

2 + t6

8 + t8

64 + t10

1280 :

ð65Þ

Therefore,

y2
t
2

� �
= t4

32 + t6

512 + t8

16384 + t10

1310720 ,

y3 tð Þ =N y0
t
2

� �
+ y1

t
2

� �
+ y2

t
2

� �� �
−N y0

t
2

� �
+ y1

t
2

� �� �
,

y3 tð Þ = S−1 uS 2t 1 + t2

4 + t4

32 + t6

512 + t8

16384 + t10

1310720

� �4
− 1 + t2

4

� �4 !" #" #
:

ð66Þ

Similarly, we can gain the remaining values by using the
recurrence relation

yn+1 tð Þ = S−1 uS 〠
∞

n=1
N 〠

k

n=0
yn

2 t
2

� � !
−N 〠

k−1

n=0
yn

2 t
2

� � !( ) !" #
, n ≥ 2:

ð67Þ

Now, in the understanding of (28), the solution of Exam-
ple 4 is

y tð Þ = y0 tð Þ + y1 tð Þ + y2 tð Þ + y3 tð Þ+⋯

= 1 + t2 + t4

2 + t6

8 + t8

64 + t10

1280 +:⋯
ð68Þ

Example 5. Consider the nonlinear proportional delay differ-
ential equation [(39)]:

d2y tð Þ
dt2

= 1 − 2y2 t
2

� �
, 0 < t < 1, ð69Þ
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with initial condition

y 0ð Þ = 1,
dy 0ð Þ
dt

= 0:
ð70Þ

The exact solution is given by

y tð Þ = cos t: ð71Þ

Solution: taking the Sumudu transform on both sides of
equation (69), we get

G uð Þ − y 0ð Þ
u2

−
y′ 0ð Þ
u

= S 1½ � − S 2y2 t
2

� �� �
: ð72Þ

Replacing equation (70) into equation (72), we get

G uð Þ = 1 + u2 − u2S 2y2 t
2

� �� �
: ð73Þ

Consequently, taking the inverse Sumudu transform of
equation (73) implies that

S−1 G uð Þ½ � = S−1 1 + u2 − u2S 2y2 t
2

� �� �� �
: ð74Þ

By using the properties of Sumudu transforms listed in
Table 2, equation (74) becomes

y tð Þ = 1 + t2

2 − S−1 u2S 2y2 t
2

� �� �� �
: ð75Þ

Aproximate solution
Exact solution
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0.0
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Ex
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t |

0.2 0.4 0.6 0.8 1.0

0.00
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0.15

t

(b)

Figure 2: (a) 2D solution plots of Example 2 obtained by the present method in comparison with the exact solutions. (b) The absolute errors
of Example 2.
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Figure 1: (a) 2D solution plots of Example 1 obtained by the present method in comparison with the exact solutions: (b) The absolute errors
of Example 1.
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Now, applying the new iterative method to equation (75)
in the understanding of equations (27)–(31), we attain the
components of the answer as follows:

y0 tð Þ = 1 + t2

2 ,

y0
t
2

� �
= 1 + t2

8 ,

y1 tð Þ = −S−1 u2S 2y02
t
2

� �� �� �
,

y1 tð Þ = −S−1 2u2S 1 + t2

8

� �2" #" #
= −S−1 2u2 + u4 + 3u6

4

� �

= − t2 + t4

24 + t6

960

� �
= −t2 −

t4

24 −
t6

960 ,

y1
t
2

� �
= −

t2

4 −
t4

384 −
t6

23040 ,

y2 tð Þ =N y0
t
2

� �
+ y1

t
2

� �� �
−N y0

t
2

� �� �

= −S−1 2u2S 1 − t2

8 −
t4

384 −
t6

23040

� �2
− 1 + t2

8

� �2" #

= t4

12 + t6

2880 −
6:5t8
645120 −

1:3t10
6635520 + t12

583925760

−
t14

96613171200 :

ð76Þ

Similarly, we can obtain the continuing values by con-
suming the recurrence relation
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Aproximate solution
Exact solution
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0.2

0.4

0.6

0.8

| y
8 -

Ex
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t |

t

(b)

Figure 4: (a) 2D solution plots of Example 4 obtained by the present method in comparison with the exact solutions: (b) The absolute errors
of Example 4.
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Figure 3: (a) 2D solution plots of Example 3 obtained by the present method in comparison with the exact solutions: (b) The absolute errors
of Example 3.
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t

Aproximate solution
Exact solution
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Figure 5: (a) 2D solution plots of Example 5 obtained by the present method in comparison with the exact solutions: (b) The absolute errors
of Example 4.

Table 3: Eight-term approximate solution by SIM and comparison with the exact solution of Example 1 for different values of time
variable t and the absolute error E = jy8 − exactj.
t Exact SIM (y8) Error of SIM y8 − exactj j
0.01 0.0099998333341666646825424382691 0.00999983333416667063508471526821 5:95254227699911294235387479603 × 10−18

0.02 0.01999866669333307936649029469297 0.01999866669333384125773813756605 7:6189124784287308037906972682347 × 10−16

0.03 0.02999550020249566076852634192626 0.02999550020250867810614554185268 1:3017337619199926418381976803817 × 10−14

0.04 0.03998933418663415945254681171591 0.03998933418673167634294383001184 9:7516890397018295927234489854206 × 10−14

0.05 0.04997916927067832879486500084549 0.04997916927114330700566527734285 4:649782108002764973569663272669 × 10−13

0.06 0.05996400647944459919909113785698 0.05996400648111061892356958248079 1:6660197244784446238102384892945 × 10−12

0.07 0.06994284733753276397654730680789 0.06994284734243374056587452844627 4:9009765893272216383775880181497 × 10−12

0.08 0.0799146939691726873068763473145 0.07991469398165219212721967955811 1:2479504820343332243614165116637 × 10−11

0.09 0.08987854919801104969125398260714 0.08987854922647087812490750521404 2:8459828433653522606907291960894 × 10−11

0.1 0.09983341664682815230681419841062 0.09983341670632556940300754956858 5:9497417096193351157956953086635 × 10−11

Table 4: Eight-term approximate solution by SIM and comparison with the exact solution of Example 2 for different values of time
variable t and the absolute error E = jy8 − exactj.
t Exact SIM (y8) Error of SIM y8 − exactj j
0.01 0.98019867330675530222081410422531 0.98019867329836939605379226388544 7:6567061670218403398688662997124 × 10−12

0.02 0.96078943915232320943921069132325 0.96078943888228284700214947089947 2:7004036243706122042377588602797 × 10−10

0.03 0.94176453358424870953715278327115 0.94176453152071806501338544573103 2:0635306445237673375401197060947 × 10−9

0.04 0.92311634638663578291075984957239 0.92311633763624217323456790123457 8:7503936096761919483378188100436 × 10−9

0.05 0.90483741803595957316424905944644 0.90483739116411428129862225244916 2:6871845291865626806997276621195 × 10−8

0.06 0.88692043671715751552756522876984 0.88692036943184962987588334125606 6:7285307885651681887513777352279 × 10 − 8

0.07 0.86935823539880581966308441617118 0.86935808905739005461938175154321
1:46341415765043702664

62797283252 × 10−7

0.08 0.85214378896621133845634698146856 0.85214350187120026344973544973545
2:87095011075006611531

73311265977 × 10−7

0.09 0.83527021141127202131238497401878 0.83526969081049408265488542829241
5:20600777938657499545

72636623644 × 10−7

0.10 0.81873075307798185866993550861904 0.81872986593381797615602954144621
8:87144163882513905967

17282942436 × 10−7
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Table 5: Eight-term approximate solution by SIM and comparison with the exact solution of Example 3 for different values of time
variable t and the absolute error E = jy8 − exactj.

t Exact SIM (y8) Error of SIM y8 − exactj j

0.01 1.0100501670841680575421654569029 1.0100501670841679703001456296863
8:72407091600392600
33807362201524 × 10−17

0.02 1.0202013400267558101601439204832 1.020201340026750198760306630291
5:61139983729019215
14353035089912 × 10−15

0.03 1.0304545339535168556124399538312 1.0304545339534526177307327335903
6:42378817072202408
98132905025143 × 10−14

0.04 1.0408107741923882267570447579169 1.0408107741920254859120141093474
3:627408450306485694
5474408297705 × 10−13

0.05 1.0512710963760240396975176363356 1.0512710963746333515431199754987
1:390688154397660836
9452201748213 × 10−12

0.06 1.0618365465453596222246848771684 1.0618365465411862143015722112639
4:173407923112665904
4723284282604 × 10−12

0.07 1.0725081812542164790531039498891 1.0725081812436398915729504243827
1:057658748015352550
6414605574959 × 10−11

0.08 1.0832870676749585544359877586749 1.083287067651245748758708994709
2:371280567722904968
0188500198714 × 10−11

0.09 1.0941742837052103578728976235449 1.0941742836569532236390447278704
4:825713423385289567
448601184652 × 10−11

0.10 1.1051709180756476248117078264902 1.105170917984387381148296268739
9:126024366341155775
1246668224547 × 10−11

Table 6: Eight-term approximate solution by SIM and comparison with the exact solution of Example 4 for different values of time
variable t and the absolute error E = jy8 − exactj.

t Exact SIM (y8) Error of SIM y8 − exactj j

0.01 1.0001000050001666708334166680556 1.00010000500012500156250078125
2:6046270915886805575397

073415454 × 10−14

0.02 1.0004000800106677334186723558807 1.000400080008000400008
2:6673334106723558806511

753256021 × 10−12

0.03 1.0009004051215273424214882074109 1.0009004050911352520238203125
3:0392090397667894910855

90924096 × 10−11

0.04 1.0016012806829398207379736827213 1.001601280512102408192
1:7083741254597368272128

248212481 × 10−10

0.05 1.0025031276057950849746220074108 1.0025031269537354278564453125
6:5205965711817569491078

540400885 × 10−10

0.06 1.0036064877830034418728643444857 1.00360648583462487239203125
1:9483785694808330944857

236586806 × 10−9

0.07 1.0049120246322102296748917218405 1.0049120197151347084
4:9170755212748917218404

870487403 × 10−9

0.08 1.0064205237606613073497170430935 1.006420512794222788608
1:0966438518741717043093

549369087 × 10−8

0.09 1.0081328937531522955843597170773 1.0081328714974127420656328125
2:2255739553518726904577

318679382 × 10−8

0.10 1.0100501670841680575421654569029 1.010050125156328125
4:1927839932542165456902

860033807 × 10−8
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Now, in view of (28), the solution of Example 5 is

y tð Þ = y0 tð Þ + y1 tð Þ + y2 tð Þ + y3 tð Þ+⋯

= 1 − t2

2 + t4

24 −
t6

1440 + 6:5t8
645120 −

1:3t10
6635520

+ t12

583925760 −
t14

96613171200 +:⋯

ð78Þ

6. Discussion

A graph is an essential tool for illustrating the phenomenon
physical structures in the context of practical applications.
This section has covered the acquired solution that has been
shown with figures and tables. The comparison of the eight-

term approximate solution using the current technique with
the precise answers for illustrative instances 1 − 5 at various
values of the time variable t is shown in Figures 1(a), 2(a),
3(a), 4(a), and 5(a). These figures demonstrate that the pres-
ent approach SIM is an effective mathematical instrument.
The solution of plots using the present method and the pre-
cise solution virtually fit one over the other. Figures 1(b),
2(b), 3(b), 4(b), and 5(b) present the 2D graphs of absolute
errors in the interval t ∈ ð0, 1Þ and over the eight-term
approximate and accurate solutions of instances 1, 2, 3, 4,
and 5, respectively. There are error functions accessible to
separate the scheme’s competency and exactness. We pro-
vided the absolute, relative, and recurrence error functions
to describe the precision and competence of SIM.

The comparisons of eight-term approximation solutions
and the exact solutions for instances 1 − 5 are shown in
Tables 3–7 together with their corresponding absolute errors
for various values of the time variable t. The tables show that
the current method’s answer provides a very excellent estimate
with very little error in comparison to the precise solution.

Table 7: Eight-term approximate solution by SIM and comparison with the exact solution of Example 5 for different values of time
variable t and the absolute error E = jy8 − exactj.

t Exact SIM (y8) Error of SIM y8 − exactj j
0.01 0.99995000041666527778025793375221 0.99995000041666597222322978474719 6:9444297185099498765700898213503 × 10−16

0.02 0.99980000666657777841269559083748 0.99980000666662222196428370810586 4:4443551588117268384909109084136e × 10−14

0.03 0.99955003374898751627215870646661 0.99955003374949374338925373269758 5:0622711709502623096470099213223 × 10−13

0.04 0.99920010666097794031457075812913 0.9992001066638221561884218407565 2:8442158738510826273615840389857 × 10−12

0.05 0.99875026039496624656287081115652 0.9987502604058155784510124137974 1:0849331888141602640876969231305 × 10−11

0.06 0.99820053993520416554766168718284 0.9982005399675983075601052007242 3:2394142012443513541362920715428 × 10−11

0.07 0.99755100025327957462090838993974 0.99755100033496016326004058023897 8:1680588639132190299235800066344 × 10−11

0.08 0.99680170630261938497770677463351 0.99680170648460531599149571403043 1:8198593101378893939691803779311 × 10−10

0.09 0.99595273301199425309283937182514 0.99595273338090037082113388945936 43:6890611772829451763421912989156 × 10−10

0.10 0.99500416527802576609556198780387 0.99500416597212144618056523802984 6:9409568008500325022596734437406 × 10−10

Table 8: The relative error = jy − y8j/y and the recurrence errors jy8 − y7j of the eight-term approximate solution with different values of t
for Example 1.

t Rel:error = y − y8j j
y

The recurrence errors y8 − y7j j
0.01 5:9526414871945109656612382108804 × 10−16 1:8771933980659682854623330813807 × 10−42

0.02 3:8097102148157878764411863518049 × 10−14 6:1511873267825648778029730410683 × 10−38

0.03 4:3397634749617773252154115623977 × 10−13 2:6935673489862558793048469387755 × 10−35

0.04 2:4385724939029334238556007347317 × 10−12 2:0156210632401108591584782060973 × 10−33

0.05 9:3034401648822304645892485008952 × 10−12 5:7287396181212411055369051555808 × 10−32

0.06 2:7783662605158795458009676311753 × 10−11 8:8262814891581632653061224489796 × 10−31

0.07 7:0071162039999724917837155730614 × 10−11 8:9120911233770994492519048996914 × 10−30

0.08 1:5616032797619591090961240307272 × 10−10 6:6047871000251952632905013857395 × 10−29

0.09 3:166476171188944712375521506634 × 10−10 3:8649747388840329890348473373724 × 10−28

0.1 5:9596695269552980446935638307384 × 10−10 1:8771933980659682854623330813807 × 10−27
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Table 9: Relative error = jy − y8j/y and the recurrence errors jy8 − y7j of the eight-term approximate solution with different values of t for
Example 2.

t Rel. error = y − y8j j/y The recurrence errors y8 − y7j j
0.01 8:5553127089343170374270459421746 × 10−12 3:7676022376543209876543209876543 × 10−25

0.02 2:8106091869131080159675495546539 × 10−10 3:858024691358024691358024691358 × 10−22

0.03 2:1911322532716372173477594118403 × 10−9 2.2247314453125 × 10−20

0.04 9:4791882344278178169768399760563 × 10−9 3:9506172839506172839506172839506 × 10−19

0.05 2:9697981931597903981571901091965 × 10−8 3:6792990602092978395061728395062 × 10−18

0.06 8:5536390478748811426675600590532 × 10−8 2:2781251507040895061728395061728 × 10−17

0.07 1:6833269624220174754962744684297 × 10−7 1:0642541956018518518518518518519 × 10−16

0.08 3:3690911650403441436132921473112 × 10−7 4:0454320987654320987654320987654 × 10−16

0.09 6:2327229060288257396201891734213 × 10−7 1:313681671142578125 × 10−15

0.1 1:0835603286518002061147680805238 × 10−6 3:7676022376543209876543209876543 × 10−15

Table 10: Relative error = jy − y8j/y and the recurrence errors jy8 − y7j of the eight-term approximate solution with different values of t for
Example 3.

t Rel. error = y − y8j j/y The recurrence errors y8 − y7j j
0.01 8:6373947225877417868639773271375 × 10−17 1:8838011188271604938271604938272 × 10−28

0.02 5:5002866759055889633247305984701 × 10−15 1:929012345679012345679012345679 × 10−25

0.03 6:2339365387389300013823686028123 × 10−14 1:11236572265625 × 10−23

0.04 3:4851757305463662660581726127457 × 10−13 1:9753086419753086419753086419753 × 10−22

0.05 1:3228634927676470260161527926961 × 10−12 1:8396495301046489197530864197531 × 10−21

0.06 3:9303675661670079053871690963782 × 10−12 1:1390625753520447530864197530864 × 10−20

0.07 9:8615448021897730482326991451309 × 10−12 5:3212709780092592592592592592593 × 10−20

0.08 2:1889678539385847003643462470927 × 10−11 2:0227160493827160493827160493827 × 10−19

0.09 4:4103699888137939075348720380715 × 10−11 6:568408355712890625 × 10−19

0.1 8:2575683245733854395955338928169 × 10−11 1:8838011188271604938271604938272 × 10−18

Table 11: Relative error = jy − y8j/y and the recurrence errors jy8 − y7j of the eight-term approximate solution with different values of t for
Example 4.

t Rel. error = y − y8j j/y The recurrence errors y8 − y7j j
0.01 4:1665104197134626794006536633891 × 10−14 0.00000000000000000000000078125

0.02 2:666266690666311080683726099371 × 10−12 0.000000000000000000008

0.03 3:036474982141479657190277700251 × 10−11 0.0000000000000000004613203125

0.04 1:7056429124120981178930665544512 × 10−10 0.000000000000000008192

0.05 6:5043154396479848831880033593507 × 10−10 0.0000000000000000762939453125

0.06 1:9413770169868662957457642073733 × 10−9 0.00000000000000047239203125

0.07 4:8930407844154338466912464932543 × 10−9 0.0000000000000022068375

0.08 1:0896477426517253442706479538359 × 10−8 0.000000000000008388608

0.09 2:2076196195387892241157337954729 × 10−8 0.0000000000000272405031328125

0.1 4:15106509546751004088859882255 × 10−8 0.000000000000078125
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Moreover, the proposed approach gives a small error neighbor-
ing t = 0, but the error increases as jtj grows. This is to means
that a greater approximation can be achieved for small values
of time t. Additionally, the recurrence and relative errors of the
SIM approximation solution for instances 1 − 5 are generated
to verify the correctness of our technique, as shown in
Tables 8–12. It is clear from the findings that the current
approach is a useful and efficient solution for solving specific
classes of nonlinear DDEs with a minimum of computations
and iterations.

7. Conclusion

This study introduced SIM, a hybridization of the Sumudu
transform method with the new iterative method. First, the
linear component of DDEs is solved using the Sumudu
transform method. To simplify the complexity of the novel
term from the nonlinear term, a posttreatment new iterative
method is employed as illustrated in Section 3. We provide
the fundamental definitions and terminology for the DDEs,
the new iterative approach, and the Sumudu transform
method. The validity and consistency of SIM have been ver-
ified with the help of five significant problems. The absolute,
recurrence, and relative errors of all considered examples are
interpreted graphically and numerically, for different values
of the time variable t. From the demonstrative examples,
the results reveal that the current technique SIM generates
a decent approximation that is extremely close to the precise
answers with a low amount of error. Therefore, SIM is quite
valuable, as it allows us to improve accuracy and efficiency
and provides a mathematical tool for nonlinear DDEs.
Finally, we hope that this work is a step toward examining
this approach to tackling some exciting problems in various
areas of science and engineering, given the ongoing use of
nonlinear DDEs as models in several different disciplines.
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