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Abstract 
Symbolic Aggregate approXimation (SAX) is an efficient symbolic represen-
tation method that has been widely used in time series data mining. Its major 
limitation is that it relies exclusively on the mean values of segmented time 
series to derive the symbols. So, many important features of time series are 
not considered, such as extreme value, trend, fluctuation and so on. To solve 
this issue, we propose in this paper an improved Symbolic Aggregate approXi-
mation based on multiple features and Vector Frequency Difference (SAX_V- 
FD). SAX_VFD discriminates between time series by adopting an adaptive 
feature selection method. Furthermore, SAX_VFD is endowed with a new 
distance that takes into account the vector frequency difference between the 
symbolic sequence. We demonstrate the utility of the SAX_VFD on the time 
series classification task. The experimental results show that the proposed 
method has a better performance in terms of accuracy and dimensionality 
reduction compared to the so far published SAX based reduction tech-
niques.  
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1. Introduction 

A time series is a sequence of observations taken sequentially in time [1]. The 
data in most application fields in the real world are stored in the form of time 
series data. Meteorological data in weather forecast, foreign trade floating ex-
change rate, radio waves, images collected by medical devices, continuous sig-
nals in engineering applications, biometric data (image data of face recognition), 
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particle tracking in physics, etc. These data can be processed as time series. With 
the continuous innovation and application of Internet of things, cloud compu-
ting, next generation mobile communication and other information technolo-
gies, the amount of time series data increases exponentially. Time series data 
mining has attracted enormous attention in the last decade [2] [3] [4]. 

The most obvious nature of time series includes large in data size and high 
dimensionality. Data mining directly from the original series is not only time- 
consuming but also inefficient. Therefore, in the context of time series data 
mining, the fundamental problem is how to represent the time series data [5]. 
Time series representation is a common dimension reduction technology in time 
series data mining. It represents the original time series in another space through 
transformation or feature extraction. It can reduce the data to manageable size 
and retain the important characteristics of the original data. In recent years, time 
series representation has arisen as a relevant research topic. A great number of 
time series representations have been introduced. The techniques of time series 
representation are divided into two main categories: data adaptive such as Adap-
tive Piecewise Constant Approximation (APCA) [6], and non-data adaptive such 
as Discrete Fourier Transform (DFT) [7] [8] [9]. Each method aims to support 
similarity search and data mining tasks, and most of them [10]-[16] focus on 
data compression efficiency.  

Symbolic Aggregate approXimation (SAX) is a data adaptive technique that 
transforms a time series into a symbolic sequence [16]. SAX is the first symbolic 
representation method to reduce and index dimensions by using the boundary 
distance measure which is lower than Euclidean distance [10] [17]. In the clas-
sic time series mining tasks, such as classification, clustering, indexing, SAX 
can achieve the similar performance as other famous methods such as Discrete 
Wavelet Transform (DWT) [11] and Discrete Fourier Transform (DFT) [18], 
but it only needs less storage space. In addition, this discrete feature representa-
tion method enables researchers to use the rich data structures and algorithms in 
text mining to solve various tasks of time series data mining, which has great 
expansion and application potential. 

The SAX’s major limitation is that it extracts exclusively the mean feature of 
segmented time series to derive the symbols. However, many important features 
of time series are not considered, such as extreme value, trend, fluctuation and 
so on. Different segments with similar mean values may be mapped to the same 
symbols. It does not distinguish the segments with similar mean values very well.  

There have been some improvements of the SAX representation which focus 
on the selection of extracted features. Some methods improve the SAX by re-
placing mean feature with trend feature. SAX-TD [19] uses the starting and the 
ending points of segment approximatively determine a trend and proposes a 
modified distance accordingly. SAX-DR [20] encodes the direction of segment as 
trend feature. Each time series segment is mapped to one of the three directions: 
convex, concave and linear. SAX-CP [21] captures the trend through the assess-
ment of variation between a point and a segment mean. Some methods improve 
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the SAX by increasing the number of extracted features. For example, ESAX [22] 
extracts three features for each segment, the original mean value and additional 
min and max value, which are used for time series data representation. ESAX 
triples the storage cost with respect to the original SAX representation but enjoys 
better classification accuracy results than the SAX. SFVS [23] utilizes a symbolic 
representation based on the summary of statistics of segment. It considers the 
symbols as a vector, including the mean and variance feature as two elements. 
These research results also have shown that it is very important to extract ap-
propriate features for discretization. According to the characteristics of different 
types of data sets, how to extract appropriate features is a problem worthy of 
discussion. 

We propose in this paper an improved Symbolic Aggregate approXimation 
based on multiple features and Vector Frequency Difference (SAX_VFD). Three 
main contributions have been made in this work. Firstly, an adaptive feature se-
lection method is proposed to optimize the insufficient representation of single 
feature. Each time series segment is transformed into a vector that includes four 
selected feather values of that segment. Secondly, a new distance that takes into 
account the vector frequency difference between the symbolic sequence is in-
troduced. Our improved distance measure keeps a lower-bound to the Euclidean 
distance. Thirdly, a comprehensive set of experiments, which shows the benefits 
of using SAX_VFD in enhancing the accuracy of time series classification, has 
been conducted.  

The rest of this paper is organized as follows. Section 2 provides the back-
ground knowledge of SAX. Section 3 introduces our SAX_VFD technique. Sec-
tion 4 contains an experimental evaluation on several time series data sets. Fi-
nally, Section 5 offers some conclusion and suggestions for future work. 

2. Symbolic Aggregate ApproXimation (SAX) 

The SAX mainly includes three steps. Firstly, each time series is normalized to 
have a mean of zero and a standard deviation of one, since it is convenient for 
comparing time series with different offsets and amplitudes [2].  

Secondly, Piecewise Aggregate Approximation (PAA) [24] is used to transform 
a time series into equally sized segments. In short, PAA is to divide the time se-
ries into equal size segments, and use the average value of each segment as a 
simplified representation of the original data. A time series  

1 2 3, , , , nC c c c c=   of length n can be represented in a ω-dimensional space by 
a vector 1 2 3, , , ,C c c c cω=  . The 𝑖𝑖th element of C  is calculated by the fol-
lowing Equation (1): 

( )1 1

n i

i jnj i
c c

n
ω

ω

ω
= − +

= ∑                        (1) 

Finally, the PAA transformed features are applied a further transformation to 
obtain a word based on the breakpoints interval it falls in. Given that the norma-
lized time series have highly Gaussian distribution, the breakpoints can divide 
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the area under distribution into α equiprobable regions where α is the alphabet 
size. A lookup table that contains the breakpoints is shown in Table 1. 

The features transformed from PAA can be mapped to specific alphabet sym-
bol according to the results of Table 1. If the feature falls in the interval  
( )1,β−∞ , it is mapped to the alphabet symbol “A”. If the feature falls in the in-
terval [ )2 3,β β , it is mapped to the alphabet symbol “B” and so on. As shown in 
Figure 1, a time series of length 470 is mapped to the word “DDDEA”, where 
the number of segments ω is 5 and the size of alphabet α is 6. Through the SAX 
transformation, a time series of length n obtain a discrete and symbolic repre-
sentation 1 2 3

ˆ ˆ ˆ ˆ ˆ, , , ,C c c c cω=  . 
For the utilization of the SAX in classic data mining tasks, the distance called 

MINDIST was proposed. Given two time series Q and C with the same length n, 
Q̂  and Ĉ  are their SAX representation with the number of segments ω, the 
distance MINDIST between these two symbolic sequences is defined in Equation 
(2). 
 

 

Figure 1. A time series of length 470 is mapped to the word “DDDEA”, where ω is 5 and 
α is 6. 
 
Table 1. A lookup table for breakpoints with the alphabet size from 3 to 10. 

β/α 3 4 5 6 7 8 9 10 

β1 −0.43 −0.67 −0.84 −0.97 −1.07 −1.15 −1.22 −1.28 

β2 0.43 0 −0.25 −0.43 −0.57 −0.67 −0.76 −0.84 

β3  0.67 0.25 0 −0.18 −0.32 −0.43 −0.52 

β4   0.84 0.43 0.18 0 −0.14 −0.25 

β5    0.97 0.57 0.32 0.14 0 

β6     1.07 0.67 0.43 0.25 

β7      1.15 0.76 0.52 

β8       1.22 0.84 

β9        1.28 
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( ) ( )( )2

1
ˆ ˆ ˆ ˆ, ,i ii

nMINDIST Q C dist Q Cω

ω =
= ∑             (2) 

where the dist() function can be implemented using Table 1, and is calculated by 
Equation (3). 

( )
( ) ( )ˆ ˆ ˆ ˆmax , 1 min ,

ˆ ˆ0, if 1
ˆ ˆ,

, otherwise
i i i i

i i

i i
Q C Q C

Q C
dist Q C

β β
−

 ≤−= 
−

         (3) 

The SAX representation can approximately represent the original time series, 
where the parameter ω controls the number of approximation and the parameter 
α controls the granularity of approximate symbols. The choice of parameters is 
highly dependent on data. 

3. Proposed Technique 

As we reviewed at Section 1, using the SAX the time series can be mapped to 
symbols by the mean feature of segments. But this representation is imprecise 
due to differences between data sets. For financial data, volatility and extreme 
value are important features, while for meteorological data, more attention is 
paid to the trend and periodicity of data. Therefore, for different datasets, ex-
tracting the same features is not conducive to distinguish time series. 

In this paper, we use a feature vector to represent each segment of time series. 
The elements in the vector depend on the result of feature selection. To go a step 
further, we introduce a new distance measurement method, which takes the 
vector frequency difference as the weight of different feature distances based on 
the classic SAX. 

3.1. Optimal Feature Vector 

After dimensionality reduction of the original time series, if the distance be-
tween two points in the original space is less than the threshold, but the distance 
between the two points in the reduced feature space is greater than the thre-
shold, the false dismissals will be caused. 

Faloutsos et al. introduced lower bounding [18]. It is proved that in order to 
guarantee no false dismissals, the distance measure in the reduced feature space 
must satisfy the condition as described in Equation (4).  

( ) ( )( ) ( )1 2 1 2, ,feature objectD F O F O D O O≤                 (4) 

where 1O  and 2O  are the two objects in original space, their distance is  
( )objectD ; ( )1F O  and ( )2F O  are the feature extracting function, the distance 

in reduced feature space. 
To assess the distance quality, the Tightness of Lower Bound (TLB) [2] metric 

is used. TLB is defined as Equation (5). 

lower bound distanceTLB
true euclidean distance

=                    (5) 

The value of TLB is between 0 and 1. The closer to 1 is this fraction, the better 
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is the TLB, which shows that the distance after dimensionality reduction is closer 
to the original distance.  

Based on this point, we propose an optimal feature vector selection algorithm. 
For a specific data set, the features which have larger TLB value are selected. Al-
gorithm 1 describes the process of optimizing feature vector. 

Firstly, N groups of samples are randomly selected from the training set and 
the test set. The candidate feature quantity is calculated, and the distance be-
tween words is calculated using the classic SAX. Divided by the Euclidean dis-
tance between the original samples to get the value of tlb. According to the defi-
nition of TLB, the closer to 1 is this fraction, the better is the TLB. Therefore, we 
keep the k features with the largest tlb mean value as the optimal features. In this 
paper, the value of N is one tenth of the length of the training set. If the length of 
the training set is less than 50, the value of n is half of the length of the training 
set to ensure the stability of the selected features. The k value is set to 4. 

From the perspective of pattern recognition [25], it is more efficient to cha-
racterize time series using some key classes of methods, including autocorrela-
tion, stationarity, entropy, and methods from the physics-based nonlinear time 
series analysis [26]. For the candidate feature list func, we refers to the feature 
extraction method in tsfresh [27] module. SAX_VFD proposed in this paper 
provides a total of 18 features in three categories: statistical features, entropy 
features and fluctuation features. 

1) Statistical features 
There are 9 statistical features, including maximum (max), minimum (min) 

and mean (μ), median (median), variance (σ2), skewness (SKEW), kurtosis 
(KURT), range (R) and interquartile range (IQR). 1 2 3, , , ,n nX x x x x=   is a 
time series of length n, the statistical features are calculated by Equations as fol-
lows: 

1

1
ii

n x
n

µ
=

= ∑                            (6) 

( )22
1

1
ii

n x
n

σ µ
=

= −∑                         (7) 

 
Algorithm 1. Feature vector selection (T, func, k, ω, α). 
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( ) ( )3

31

1 i
i
n x

SKEW X
n

µ
σ=

−
= ∑                    (8) 

( ) ( )4

41

1 3i
i
n x

KURT X
n

µ
σ=

−
= −∑                   (9) 

( ) ( )max minn nR X X= −                     (10) 

3 1IQR Q Q= −                          (11) 

2) Entropy features 
Usually, the statistical characteristics alone cannot accurately distinguish time 

series very well. Entropy can be used to describe the uncertainty and complexity 
of time series. In this paper, four kinds of entropy features of time series are 
adopted, which are entropy, binned entropy, approximate entropy and sample 
entropy.  

According to the concept of information entropy in information theory, the 
more orderly a system is, the lower its information entropy is. The more chaotic 
a system is, the higher its information entropy is. Information entropy is a 
measure of the degree of system ordering, so it can describe the randomness of 
time series to a certain extent. Information entropy is calculated by Equation 
(12). 

( ) { } ( )( )
1

lni i
i

entropy X P x x P x x
∞

=

= − = =∑             (12) 

First bins the values of Xn into maxbin equidistant bins, then the binned en-
tropy (bEn) is calculated by Equation (13). 

( ) ( ) ( )
( )( )min ,

00 ln 1
k

maxbin len X
k k PKEbEn X P P >=

= − ⋅∑            (13) 

where Pk is the percentage of samples in bin k, maxbin is the maximal number of 
bins, len(X) is the length of X. 

If the bEn is large, it means that the values of this time series are evenly dis-
tributed in the range of min(Xn) and max(Xn). If the bEn is small, it means that 
the value of the time series is concentrated in a certain segment. 

Approximate entropy (apEn) and sample entropy (sampEn) are created to meas-
ure the repeatability or predictability within a time series. Both features are ex-
tremely sensitive to their input parameters: m (the length of the compare win-
dow) and r (the similar tolerance border) and n (length of time series). 

Approximate entropy is defined as the conditional probability to maintain its 
similarity when the similarity vector increases from m to m + 1 in dimension as 
described in Equation (14). The physical meaning is the probability of generat-
ing new patterns in a time series when the dimension changes. The more the 
probability to generate new patterns, the more complex the sequence becomes, 
and the larger the apEn. In theory, the apEn can reflect the degree and length of 
the numerical variation. 

( ) ( ) ( )1m mapEn X r r+= Φ −Φ                  (14) 
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The ( )m
iC r  values measure the regularity within a tolerance r, or the fre-

quency of patterns similar to a given pattern of the window length m. ( )m rΦ  is 
the average value of ( )( )ln m

iC r , where ln is the natural logarithm. 

( )
( )( )1

1 ln

1

N m m
ii

m

C r
r

N m

− +

=Φ =
− +

∑
                    (15) 

The calculation process of sample entropy is similar to that of approximate 
entropy. The natural logarithm is not used to calculate the average similarity 
rate. 

( ) ( )1
1

1

N m m
ii

m

C r
B r

N m

− +

==
− +

∑                      (16) 

But the natural logarithm is used to calculate the sample entropy.  

( ) ( )
( )

1ln m

m

B r
sampEn X

B r
+ 

= −  
  

                  (17) 

The smaller the sample entropy is, the stronger the autocorrelation is. In this 
paper, we utilize the recommended parameter values. The parameter m is set to 
3, r is set to 0.2 times the standard deviation of the original sequence. 

3) Fluctuation features 
In addition, there are five features to characterize the fluctuation of time se-

ries. They are slope (slope), absolute energy (absenergy), sum over first order diffe-
rencing (absolute_sum_of_changes), average over first order differencing (me- 
an_abs_changes) and the mean value of a central approximation of the second 
derivative (mean_second_derivative_central). 

p qx x
slope

p q
−

=
−

                       (18) 

Here we use the slope of the tangent between the extreme values, where xp, xq, 
p, q represent the extremum and corresponding time axis respectively. 

2
1energy

n
iiabs x

=
= ∑                       (19) 

Absolute energy value can describe the fluctuation of the squared values of 
time series data. 

A non-stationary time series can be converted to a stationary time series 
through differencing. First order differencing series is the change between con-
secutive data points in the series. 

1
1
1_ _ _ n

i iiabsolute sum of changes x x+=

−= −∑             (20) 

11, , 1

1_ _ i ii nmean abs changes x x
n += −

= −∑


              (21) 

( )2 11, , 1

1 1_ _ _ 2
2 i i ii nmean second derivative central x x x

n + += −
= − ⋅ +∑



   (22) 

Sum over first order differencing and average over first order differencing can 
describe the absolute fluctuation between consecutive data points in the series. 
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The second derivative is defined by the limit definition of the derivative of the 
first derivative. In definition, it represents the rate of change of first derivative, 
that is, the rate of change of fluctuation between consecutive data points. 

3.2. Mapping Symbol Vector 

The technique proposed in this paper is based on the SAX. Therefore, after k 
features are selected in the previous section, in each segment, k f feature values 
can be calculated and mapped to k symbol characters respectively. These k sym-
bol characters constitute a feature string vector for each segment.  

,1 ,2 ,3 ,, , ,,i i i i i kV f f f f=   is the feature string vector of the ith segment. And so 
on, the original time series T can be represented by in a ω feature string vectors 

1 2 3, , , ,T V V V Vω=  . Each element in the vector is no longer a single character, 
but a feature string composed of k feature values. 

Taking a time series of length 470 as an example, the length of time series is 
470, when the value of ω is 5, α is 6 and k is 4, the optimized feature list is max, 
min, median and mean. Max values and min values are respectively shown in 
red circles and in green Triangle, while media values are shown in yellow di-
amond lines and mean values are shown in brown lines in Figure 2. The charac-
ters of different colors in the figure represent they are mapped by corresponding 
features. Using the technique of SAX_VFD, the original time series can be 
represented as <“ECED”, “ECDD”, “FCDD”, “FAFE”, “EAAA”>. The length of 
vector is 20kω× = . The feature string vector contains multiple features, so it 
can better distinguish the segments. It can be observed from Figure 2, the second 
and third segments’ min, median and mean values are in the same probability 
interval, but they can still be distinguished by the max values.  

3.3. Distance Measure 

The extracted features are expanded from one to k, therefore, the distance 
measure need to be redefined. Section 2 introduces the distance measure in the  
 

 

Figure 2. An example of time series represented by SAX_VFD. 
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SAX. Based on this, we provide a new concept named the vector frequency dif-
ference. 

The idea of vector frequency comes from the concept of term frequency in 
text mining. Term frequency (TF) is used in connection with information re-
trieval and shows how frequently an expression (term, word) occurs in a docu-
ment [28]. Term frequency indicates the significance of a particular term within 
the overall document. The famous tf-idf algorithm believes that the smaller the 
term frequency, the greater its ability to distinguish different types of text [29]. 

The distance measure is proposed in this paper based on the assumption that 
the smaller the frequency of a certain feature vector in the feature vector set of 
the whole time series data set, the greater its ability to represent time series sam-
ples. Therefore, the larger the frequency difference between the two feature 
string vectors, the greater the difference in the ability to distinguish samples be-
tween them, so the corresponding distance between the two should be relatively 
increased. According to this, the distance measure is redefined.  

Given two time series Q and C with the same length n, each segmented se-
quence can be represented by a feature string vector, which contains k trans-
formed characters, after K features are selected, each segmented sequence can be 
represented by a feature string vector, and each feature string vector contains k 
transformed characters. In this case, a feature string vector in Q can be 
represented as 1 2 3ˆ ˆ ˆ ˆ, , , ,Q kV q q q q=  , and a feature string vector in C can be 
represented as 1 2 3ˆ ˆ ˆ ˆ, , , ,C kV c c c c=  . The distance vdis between two feature 
string vectors is defined as: 

( ) ( )( )2

1, ,ˆ ˆk
Q C j jjvdis V V dist q c

=
= ∑                 (23) 

Each time series is composed of ω feature string vectors, Q̂  and Ĉ  are the 
new representation of time series of Q and C. The distance between them is de-
fined as follows: 

( ) ( ) ( )( )2ˆ ˆ, , ,Qi Ci Qi Ci
nDDIST Q C vf V V vdis V V
ω

= ∆ ×         (24) 

where ( ),Qi Civf V V∆  us the frequency difference of two feature string vectors. 
One of the most important features of the SAX is that it provides a lower 

bound distance measure. The lower bound is very useful for controlling the error 
rate and improving the calculation speed [2]. Because ( ), 1Qi Civf V V∆ < , the new 
distance measure ( )ˆ ˆ,DDIST Q C  proposed in this paper still satisfies the lower 
bound. 

4. Experimental Studies 

In this section we perform time series classification using SAX_VFD. Then we 
compare the results with the classic Euclidean distance and other preciously pro-
posed symbolic techniques. We focus on the performance of classification error 
rate, dimensionality reduction and efficiency. 
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4.1. Experimental Dataset 

In this paper, we use 24 datasets from UCR repository [30]. These have been 
commonly adopted by TSC researchers. The basic information of the datasets is 
shown in Table 2. The types of datasets used are diverse and come from several 
fields, including sensor data, image contour information data, device data, si-
mulated data, etc. All data sets are of labeled, univariate time series, without any 
preprocessing. We used the default train and test data splits.  

4.2. Experimental Design 

The experiment mainly aims to confirm the proposed distance measure’s effec-
tiveness. We do comparison experiments on the SAX_VFD with the Euclidean  
 
Table 2. Datasets used in the experiments. 

# Dataset Type Train Test Length Class 

1 CBF Simulated 30 900 128 3 

2 Computers Device 250 250 720 2 

3 Earthquakes Sensor 322 139 512 2 

4 ECG200 ECG 100 100 96 2 

5 Ethanol Level Spectro 504 500 1751 4 

6 Face All Image 560 1690 131 14 

7 Face Four Image 24 88 350 4 

8 Fifty Words Image 450 455 270 50 

9 Gun Point Motion 50 150 150 2 

10 Large Kitchen Appliances Device 375 375 720 3 

11 Lightning 7 Sensor 70 73 319 7 

12 Medical Images Image 381 760 99 10 

13 Mixed Shapes Small Train Image 100 2425 1024 5 

14 OSU Leaf Image 200 242 427 6 

15 Pig CVP Hemodynamics 104 208 2000 52 

16 Power Cons Power 180 180 144 2 

17 Screen Type Device 375 375 720 3 

18 Small Kitchen Appliances Device 375 375 720 3 

19 Synthetic Control Simulated 300 300 60 6 

20 Trace Sensor 100 100 275 4 

21 Two Patterns Simulated 1000 4000 128 4 

22 Wafer Sensor 1000 6164 152 2 

23 Worms Motion 181 77 900 5 

24 Yoga Image 300 3000 426 2 
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distance and other preciously proposed symbolic techniques, which are the 
SAX and the ESAX. To the time series classification task, distance measurement 
will directly affect the classification results. Therefore, we construct 1 Nearest 
Neighbor (1 NN) classifier based on different distance measures, and compare 
the error rate to observe the advantages and disadvantages of different distance 
measures. The advantage of this design is that the underlying distance metric is 
critical to the performance of 1 NN classifier, hence, the accuracy of the 1 NN 
classifier directly reflects the effectiveness of a distance measure. Furthermore, 1 
NN classifier is parameter free, allowing direct comparisons of different meas-
ures.  

Three symbolic techniques in comparative experiments, which are the SAX, 
the ESAX and the SAX_VFD, are impacted by the choice of the segment number 
ω and the alphabet size α. We try the different combination of these two para-
meters to test their influence on the results. For ω, we choose the value from 2 to 
a quarter of the length of the time series. For α, we choose the value in the range 
of 3 and 10. 

We compare the dimension reduction effect of different techniques by the 
dimensionality reduction ratios when we get the best classification results. The 
dimensionality reduction ratio is measured as Equation (25). 

Number of the reduced data pointsDimensionality Reduction Ratio
Number of the original data points

=    (25) 

The dimensionality reduction ratio of the SAX is 
n
ω , The dimensionality re-

duction ratio of the ESAX is 3
n
ω , The dimensionality reduction ratio of the 

SAX_VFD is 4
n
ω . 

4.3. Results 

The overall classification results are listed in Table 3, where entries with the 
lowest classification error rates are highlighted. In all 24 datasets, SAX_VFD 
has the lowest error in the most of the data sets (17/24), followed by the ESAX 
(6/24). 

We use the sign test to test the significance of our proposed technique against 
other techniques. The sign test is a nonparametric test that can be used to test 
either a claim involving matched pairs of sample data.  

The sign test results are displayed in Table 4, where n+ , n−  and 0n  denote 
on the numbers of data sets where the error rates of the SAX_VFD are lower, 
larger than and equal to those of another technique respectively. A p-value less 
than or equal to 0.05 indicates a significant improvement. The smaller a p-value, 
the more significant the improvement. The p-values demonstrate that the dis-
tance measure of the SAX_VFD achieves a significant improvement over the 
other techniques on classification accuracy. 
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Table 3. 1 NN classification error rates of ED; 1 NN best classification error rates, ω, α and dimensionality reduction ratios of the 
SAX, ESAX and SAX_VFD. 

Dataset ED SAX ESAX SAX_VFD 

# error error ω α ratio error ω α ratio error ω α ratio 

1 0.1478 0.1040 32 10 0.25 0.1380 64 10 1.50 0.0756 8 9 0.25 

2 0.4240 0.4760 16 10 0.02 0.4400 8 10 0.03 0.3840 4 10 0.02 

3 0.2878 0.0000 32 10 0.06 0.0000 32 10 0.19 0.0000 16 5 0.13 

4 0.1200 0.1200 32 10 0.33 0.1100 32 10 1.00 0.1100 8 10 0.33 

5 0.7260 0.7340 64 8 0.04 0.7140 8 10 0.01 0.6960 4 10 0.01 

6 0.2864 0.3300 64 10 0.49 0.5000 8 9 0.18 0.2840 11 10 0.34 

7 0.2159 0.1700 128 10 0.37 0.1818 16 7 0.14 0.1591 44 10 0.50 

8 0.3692 0.3410 128 10 0.47 0.3275 16 10 0.18 0.3253 10 10 0.15 

9 0.0867 0.1800 64 10 0.43 0.1930 64 10 1.28 0.1667 25 10 0.67 

10 0.5067 0.5520 32 10 0.04 0.5120 32 10 0.13 0.4773 72 10 0.40 

11 0.4247 0.3970 128 10 0.40 0.3288 32 8 0.30 0.3288 32 10 0.40 

12 0.3158 0.3895 16 10 0.16 0.4289 11 10 0.33 0.3145 5 10 0.20 

13 0.1645 0.1880 32 10 0.03 0.1786 64 10 0.19 0.1781 16 10 0.06 

14 0.4793 0.4670 128 10 0.30 0.4380 16 9 0.11 0.4380 61 10 0.57 

15 0.9183 0.9375 32 8 0.02 0.9327 32 10 0.05 0.9135 16 10 0.03 

16 0.0667 0.0778 16 10 0.11 0.0722 18 10 0.38 0.0500 18 10 0.50 

17 0.6400 0.6320 64 8 0.09 0.5947 72 10 0.30 0.5760 16 5 0.09 

18 0.6587 0.5787 64 9 0.09 0.4053 8 10 0.03 0.2863 16 5 0.09 

19 0.1200 0.0200 16 10 0.27 0.1570 16 10 0.80 0.0200 5 5 0.33 

20 0.2400 0.4600 128 10 0.47 0.1800 16 10 0.17 0.2000 11 10 0.16 

21 0.0932 0.0810 32 10 0.25 0.1348 8 10 0.19 0.5487 8 10 0.25 

22 0.0045 0.0034 64 10 0.42 0.0050 16 9 0.32 0.0062 8 5 0.21 

23 0.5455 0.5065 16 9 0.02 0.4545 32 10 0.11 0.4805 45 10 0.20 

24 0.1697 0.1950 128 10 0.30 0.2220 16 10 0.11 0.2663 16 10 0.15 

 
Table 4. The sign test results of the SAX_VFD vs. other techniques. 

Techniques n+ n− n0 p-value significance 

SAX_VFD vs. ED 20 4 0 p < 0.01 extremely significant 

SAX_VFD vs. SAX 18 4 2 p = 0.01 extremely significant 

SAX_VFD vs. ESAX 15 5 4 p = 0.05 significant 
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To provide an illustration of the result in Table 3 more clearly, we use scatter 
plots for pair-wise comparisons as shown in Figure 3. In a scatter plot, the error 
rates of two measures under comparison are used as the x and y coordinates of a 
dot, where a dot represents a particular data set [31]. When a dot falls within a 
region, the corresponding technique in the region performs better than the oth-
er. In addition, the further a dot is from the diagonal line, the greater the margin 
of an accuracy improvement. The region with more dots indicates a better tech-
nique than the other. 

In Figure 3, the blue dots indicate the classification error rates are lower in 
the upper triangle region, the red squares indicate the classification error rates 
are lower in the lower triangle region. In Figure 3(a), there is no obvious differ-
ence between the SAX and ED in these 24 data sets, and the number of points on 
both sides of the diagonal is basically the similar. In Figures 3(b)-(d), on the  
 

  
(a)                                          (b) 

  
(c)                                          (d) 

Figure 3. A pairwise comparison of classification error rates for the Euclidean distance, the SAX distance, 
the ESAX distance and the SAX_VFD distance. (a) SAX vs ED; (b) SAX_VFD vs ED; (c) SAX_VFD vs SAX; 
(d) SAX_VFD vs ESAX. 
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whole, our method is obviously superior to the other three techniques, both in 
the number of points and the distance of these points from the diagonals. 

In order to understand the influence of parameter selection on the perfor-
mance, we run the experiments on data sets CBF and Small Kitchen Appliances 
using different parameter combinations. The results are shown in Figure 4. Spe-
cially, on CBF, we firstly compare the classification error rates with different ω 
while α is fixed at 10, and then with different α while ω is fixed at 8; on Small 
Kitchen Appliances, ω varies while α is fixed at 10, and then α varies while ω is 
fixed at 16. The experimental results are shown in Figure 5. The SAX_VFD ob-
tain lower classification error rates when the parameter ω are small. For exam-
ple, of CBF data set, the error rate of the SAX_VFD is 0.1667 while ω is 2, it was 
better than the SAX (0.4122) and the ESAX (0.5). The techniques are sensitive to 
the parameter α. Enlarge the value of α is easy to get better classification results. 
Generally, the SAX_VFD can achieve better accuracy with lower parameter α. 
These demonstrate that the proposed technique is more significant when the 
parameters are small. 

Totally, 447 experiments are carried out using the SAX_VFD, 1788 optimized 
features are adopted in these experiments. The results of feature selection are 
shown in Figure 5. In this divergent bar chart, the green bar on the right  
 

   
(a)                                        (b) 

  
(c)                                       (d) 

Figure 4. The classification error rates of the SAX, the ESAX and the SAX_VFD with different 
parameters ω and α. (a) on CBF, ω varies while α is fixed at 10; (b) on CBF, α varies while ω is fixed 
at 8; (c) on Small Kitchen Appliances, ω varies while α is fixed at 10; (d) on Small Kitchen 
Appliances, α varies while ω is fixed at 16. 
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represents the feature that the number of times is greater than the average value 
of the overall data, and the red bar on the left represents the feature that the 
number of times used is less than the average value of the overall data. The most 
frequently selected features are still the statistical features, such as mean, me-
dian, minimum and maximum. In the entropy features, the number of selected 
times of binned entropy is the most, and the slope is dominant in the fluctuation 
features. 

Since one major advantage of the SAX is its dimensionality reduction, we shall 
compare the dimensionality reduction of the proposed technique with the SAX 
and the ESAX. The dimensionality reduction ratios are calculated using the pa-
rameter ω when the three techniques achieve their lowest classification error 
rates on each data set. The results are shown in Figure 6. The SAX_VFD is 
competitive with the SAX on dimensionality reduction. For each segment of 
time series, the SAX_VFD extract four features, it is more features than the SAX  
 

 

Figure 5. The rank of feature selection times, where the average time is 99.33. 
 

 

Figure 6. Dimensionality reduction ratios of the SAX, the ESAX and the SAX_VFD on 24 data 
sets with their lowest error rates. 
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and the ESAX. However, the SAX_VFD can achieve the lowest classification er-
ror rate at a smaller number of segments ω. Therefore, as shown in Figure 6, in 
the aspect of dimensionality reduction, the SAX_VFD is competitive with the 
SAX, and has advantages compared with the ESAX. For example, on CBF data 
set, using the SAX, when the value of ω is 32, the lowest error rate is 0.1040; 
while using the SAX_VFD, when the value of ω is 8, the minimum error rate is 
0.0756, so the dimension reduction rate of both is 0.25. 

5. Conclusions and Future Work 

From the experiment, we found that although a variety of optimization features 
are provided, some commonly used statistical features, such as mean, median, 
minimum, maximum, slope, etc., can achieve good results. These statistical fea-
tures are not only simple to calculate, but can better represent the time series 
once combined. The method proposed in this paper adds a feature representa-
tion, so it has no advantage simply from the calculation of dimension reduction  

ratio. The dimensionality reduction ratio of the SAX is 
n
ω , The dimensionality 

reduction ratio of the ESAX is 3
n
ω . The dimensionality reduction ratio of the 

SAX_VFD is 4
n
ω . However, the SAX_VFD can achieve the lowest classification  

error rate at a smaller number of segments ω. While increasing the number of 
features, reducing the number of segments can still achieve a good effect of di-
mensionality reduction. From the perspective of classification error rate, the 
SAX_VFD has certain advantages in many data sets. 

For the future work, we intend to extend the technique to other time series 
data mining tasks such as clustering, anomaly detection and motif discovery. 
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