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Abstract 
 

The generalized Duffing oscillator is investigated in this paper by using the Equivalent Linearization 
method with a weighted averaging. Applying of the Equivalent Linearization method in which the 
averaging value is calculated in a new way called the weighted averaging value by introducing a weighted 
coefficient function, the amplitude-frequency relationship of the oscillator is obtained in a closed-form. 
The obtained solutions have been compared with approximate analytical solutions, exact solutions and 
numerical solutions. Comparisons show the reliability of the present solutions. 
 

 

Keywords: Equivalent linearization method; weighted averaging; generalized Duffing; nonlinear oscillator. 
 

1 Introduction  
 
There are many problems in physics and engineering that lead to the nonlinear differential Duffing equation: 
from the oscillation of a simple pendulum, including nonlinear electrical circuits, to various applications in 
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image processing. There are many papers published dealing with the nonlinear differential Duffing equation 
[1,2,3,4,5,6,7,8,9,10]. However, these articles mainly deal with nonlinear Duffing oscillator with third, fifth, 
or seventh order nonlinear terms. There are very few articles investigating nonlinear Duffing systems with 
higher order nonlinearities.  

 
 

Fig. 1. The simple pendulum 
 
The simplest example of the Duffing equation is the motion of a mathematical pendulum in Fig. 1. When 
friction is neglected, the differential equation governing the free oscillation of the mathematical pendulum is 
given by: 

2 2sin 0, /g l                                                                                                                    (1) 

where g is the gravitational acceleration, l  is the length of the pendulum and  θ is the deviation angle from 
the vertical equilibrium position. 

Based on Taylor-Maclaurin expansion, the approximation of sin(θ) is considered:    

1 1 1 1 1 13 5 7 9 11 13sin( ) - - - ( )
6 120 5040 362880 39916800 6227020800

nO                  (2) 

Hence, Eq. (1) can be rewritten as: 

 2 1 1 1 1 1 13 5 7 9 11 13- - - 0
6 120 5040 362880 39916800 6227020800

       
 

     
 

              (3) 

With n=13, Eq. (3) is the nonlinear Duffing oscillator with thirteenth order nonlinearity. If n=3, we have the 
cubic nonlinear Duffing oscillator; and if n=5, we have the cubic – quintic nonlinear Duffing oscillator. 
These oscillators have been studied by many authors [1,2,3,5,6,7,8,9,10]. Several approaches have been 
proposed so far dealing with the nonlinear Duffing oscillator. He's Frequency - Amplitude Formulation  
(HFAF) [11,6,12], Iteration Perturbation method (IPM) [13,14], Homotopy Perturbation method (HPM) 
[5,15], He's Energy Balance method (HEBM) [4,16,17], He's Parameter - Expanding method (HPEM) 
[18,19] and He's Max - Min approach (HMMA) [20,21,22] are some examples. And recently, a new 
Amplitude-Frequency Relationship method was introduced by He [23], this method was then applied by 
Gaxiola to find periodic solution for strongly nonlinear oscillators [24]. Appropriate analytical methods give 
us an extremely effective tool for analyzing nonlinear oscillations. 
 
The generalized Duffing equation given by in Eq. (4) representing a variety of nonlinear oscillation 
problems was solved by using HFAF and HEBM for the first time. This work was done by Younesian et al., 
in 2010 [4]. All odd-type forcing functions can be then involved in the general solution. Natural frequency of 
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the system is obtained as a function of the initial amplitude and the general solution is obtained for any 
arbitrary power of  n. Accuracy and validity of the proposed techniques are then examined by comparing the 
results obtained based on the HFAF, HEBM with exact integration method. Very good correlations between 
the three methods are achieved. 
 

 
3 5 7

3 5 7 0, with: (0) , (0) 0n
nX X X X X X X A X                                 (4) 

The Equivalent Linearization method (ELM) is one of the common approaches to approximate analysis of  
dynamical systems. The original linearization for deterministic systems was proposed by Krylov and  
Bugoliubov [25]. Then Caughey [26] expanded the method for stochastic systems. To date, there have been 
some extended versions of the Equivalent Linearization method [27,1]. It has been shown that the Equivalent 
Linearization method is presently the simplest tool widely used for analyzing nonlinear stochastic problems. 
Nevertheless, the accuracy of the Equivalent Linearization method with conventional averaging normally 
reduces for middle or strong nonlinear systems. A reason is that some terms will vanish in the averaging  
process, for example, the averaging values of the functions sin(t) and cos(t) over one period will be equal to 
zero, this makes information related to these quantities will be lost, and that often leads to large errors in the 
solution of problem. In 2015, Anh [2] proposed a new way for determining averaging values, instead of 
using conventional averaging value, author introduced weighted coefficient functions, thus the averaging 
values was given in a new way called the weighted averaging values. And the proposed method have been 
applied very effectively in analyzing of some  strongly nonlinear oscillators [3]. 

In this paper, Anh’s method will be applied to analyse the generalized Duffing oscillator given in Eq. (4). 
The obtained solutions are compared with the solutions published by Younesian et al. [4]. Comparisons 
show the accuracy of the present solutions. 

2 Solution Procedure 
 

Using the Equivalent Linearization method we will find the approximate solution of Eq. (4). First, Eq. (4) is 
replaced by the linearized equation as follows: 

2 0X X 
                                                                                                                                  (5) 

where the cofficient ω2 of the linear term is determined from the mean square error criterion which requires 
the mean square of equation error to be minimum: 

 
2

22 3 5 7 2
3 5 7( ) n

ne X X X X X X X Min


             
                             

 (6) 

Thus, from  

2

2

( )
0

e X







 

yields: 

4 6 7 1

3 5 72 2 2 2
1

n

n

X X X X

X X X X
    



                                                                        (7) 

  given in Eq. (7) is the approximate frequency of the generalized nonlinear Duffing oscillator  given by 
Eq. (4).  
 

In Eq. (7), the symbol   denotes the time-averaging operator in classical (convential) meaning [25]: 
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0

1
( ) lim ( )

T

T
X t X t dt

T
                                                                                                                 (8) 

For a ω-frequency function X(ωt), the averaging process is taken during one period T, i.e.: 

2

0 0

1 1
( ) ( ) ( ) ,

2

T

X t X t dt X d t
T



     


   
                    

                                                      (9) 

The averaging values in Eqs. (8) and (9) are called the classical or conventional averaging values. They often 
lead to inaccurate results, especially for some periodic functions such as sine or cosine ones. 

In this paper, the weighted averaging value proposed by Anh [2] is used to calculate averaging values in Eq. 
(7) in stead of  the conventional averaging  values in Eq. (8) or (9). The idea of the proposed method as 
follows: replacing the constant coefficient 1/T in Eqs.(8) and (9) by a weighted coefficient function h(t). 
Thus we get so-called a weighted average value: 

0

( ) ( ) ( )
T

X t h t X t dt                                                                                                                     (10) 

with the condition: 

0

( ) 1
T

h t dt                                                                                                                                     (11) 

In Ref. [2], Anh has proposed a weighted coefficient function as follows: 

2( ) s th t s t e                                                                                                                               (12) 

where s is positive constant. 
 
It is clear that the weighted coefficient function (12) satisfies the condition (11). The weighted coefficient 
function (12) is obtained as a product of the optimistic weighted coefficient t and the pessimistic weighted 

coefficient s te  , which has one maximal value at  max 1/( )t s  and then decreases to zero as t   . For 

case s=0, the weighted coefficient function (12) has maximal value at infinity, this case corresponds to the 
classical or conventional averaging value. The detailed properties of the weighted coefficient function h(t) 
in Eq. (12) can be viewed in Refs. [2,3]. 

The solution of the linearized equation (5) is given by: 

( ) cos( )X t A t                                                                                                                            (13) 

 
With the periodic solution of linearized equation (5) in Eq. (13), the averaging values in Eq. (7) can be 
calculated by using Eq. (10) with the weighted coefficient function given in Eq. (12) and Laplace tranform, 
for example: 

4 2
2 2 2 2 2 2 2 2 2 2

2 2

0 0

2 8
cos ( ) cos ( ) cos ( )

( 4)
s t s s s

X A t A s t e t dt A s e d A
s

      
 

   
   

      (14) 

It is similar, we get: 

8 6 4 2
4 4 4 4

2 2 2 2

28 248 416 1536
cos ( )

( 4) ( 16)

s s s s
X A t A

s s


   
 

 
  

                                                     (15) 

12 10 8 6 4 2
6 6

2 2 2 2 2 2

94 3168 45712 282496 440064 1658880

( 4) ( 16) ( 36)

s s s s s s
X A

s s s

     


  
                             (16) 
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16 14 12 10 8

6 4 2
8 8

2 2 2 2 2 2 2 2

2165 18256 768000 17013120

192596992 1014806528 1516142592 5945425920

( 4) ( 16) ( 36) ( 64)

s s s s s

s s s
X A

s s s s

     
     

   
                               (17) 

 

12 14 2

4 6

8 10 16 18 20

10 10

2 2 2 2 2 2 2 2 2 2

330883456 6277280 13076221132800

53508833280000 8994366406656 1872317542400

188571698176 10357551360 69336 410

( 4) ( 16) ( 36) ( 64) ( 100)

s s s

s s

s s s s s
X A

s s s s s

   
 

   
 

    
    

                            (18) 

For 11, 13,15,...n  , the coresponding averaging values 12 14 16, , , ...X X X  can be calculated in the 

same manner. 
 

Substituting the above averaging values calculated by using the proposed method into Eq. (7), we get the 
approximate frequency of the generalized nonlinear Duffing oscillator given in Eq. (4); and from Eq. (13) 
we get the approximate solution of the oscillator. 

 

3 Numerical Results 
 
In this section, we present and discuss the numerical results obtained by employing the present method with 
the results obtained by employing He’s Energy Balance method (HEBM), exact integration method and 
Runge – Kutta method. And in this paper, the parameter s in the expression of weighted coefficient function 
h(t) is chosen equal to 2.  

We note that the approximate frequency of the generalized Duffing oscillator (4) was found by employing 
HEBM as follows [4]: 

1,2,3,...

1
1

2 1

2
1 4 1

1 2
k m

n
nn

n
HEBM

n k

A

n









 

  
          

                                                                                   (19) 

3.1 Example 1,  for n=3 
  
The cubic nonlinear Duffing oscillator has the following form in this case: 

3
3 0X X X                                                                                                                                         (20) 

The approximate frequency obtained by the present method is derived from Eq. (7), as follows (note that 
s=2):  

2
31 0.72present A                                                                                                                                 (21) 

 
The approximately frequency obtained by using HEBM can be derived from Eq. (19): 

2
3

3
1

4
HEBM A                                                                                                                                    (22) 

Accuracy  of  this  method  for  this  example  is  shown  in  Table  1  and  Figs.  2–4.  Table   1  shows  the 
comparison between the approximate frequencies ωpresent  obtained by this method, the ones obtained by 
HEBM  ωHEBM  [4] and the exact ones ωe [7], the relative error is obtained for small and large values of the 
initial amplitude A. Table 1 shows that the maximum relative error is less than 0.156%  for this method  and 
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2.22%  for  HEBM, respectively. Comparions of trend the relative error of this case for two methods are 
illustrated in Figs. 2-3 for a range of initial amplitudes A and parameters α3, respectively. Again, the 
accuracy of the present method can be seen. The validity of the solution technique is guaranteed for strong 
nonlinearities. 
 

The exact frequency of the oscillator given by Eq. (20) is [7]: 

/ 2

2 2 2
0 3 3

2

4 2
cos ( ) 2

e
dt

A t A






 



 


                                                                                       (23) 

Table 1. Comparison of the approximate frequencies with the exact frequency, n=3 

 

A 3  e  HEBM  R. Error (%) 
present  

R. Error (%) 

0.01 0.1 1.000004 1.000004 0.000000 1.000004 0.000000 
1 0.1 1.036717 1.036822 0.010128 1.035374 0.129544 
10 0.1 2.866640 2.915476 1.703597 2.863564 0.107303 
100 0.1 26.810738 27.404379 2.214191 26.851443 0.151823 
       
0.01 1 1.000037 1.000037 0.000000 1.000036 0.000100 
1 1 1.317776 1.322876 0.387016 1.311488 0.477168 
10 1 8.533586 8.717798 2.158670 8.544004 0.122082 
100 1 84.727479 86.608314 2.219864 84.858707 0.154883 
       
0.01 10 1.000375 1.000375 0.000000 1.000359 0.001599 
1 10 2.866640 2.915476 1.703597 2.863564 0.107303 
10 10 26.810738 27.404379 2.214191 26.851443 0.151824 
100 10 267.914253 273.863104 2.220431 268.330021 0.155187 
       
0.01 100 1.003742 1.003743 0.000099 1.003594 0.014745 
1 100 8.533586 8.717798 2.158670 8.544004 0.122082 
10 100 84.727479 86.608314 2.219864 84.858706 0.154881 
100 100 847.213702 866.025981 2.220488 848.528727 0.155218 

 

 
 

Fig. 2. Comparison of the relative errors of  approximate frequencies obtained by two methods for 
n=3, α3=100 
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Fig. 3. Comparison of the relative errors of approximate frequencies obtained by two methods for n=3, 

A=1. 
 
Comparisons of the responses of the present solution and the HEBM solution are given in Fig. 4. Numerical  
results validate again the accuracy of the present  method. 

 

 
 

Fig. 4. Comparison of the HEBM and present solutions with the exact solution for n=3, A=1, α3=10. 
 

3.2 Example 2,  for n=5 
 
In this case, the cubic-quintic nonlinear Duffing oscillator has the following form: 

3 5
3 5 0X X X X                                                                                                                 (24) 

From Eq. (7), the approximate frequency for this case obtained by the present method as follows: 

2 4
3 51 0.72 0.575present A A                                                                                                          (25) 

The approximately frequency obtained by using HEBM for this case  can be derived from Eq. (19): 

2 4
3 5

3 7
1

4 12
HEBM A A                                                                                                                   (26) 
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To show the accuracy of the present solution, comparison of  the approximate frequencies obtained by the 
two methods are showed in Table  2 for α3=10 and α5=100. It can be seen from Table  2 that  the  maximum 
relative error of the present frequency is only 1.67% while the maximum relative error of the HEBM 
freqency reaches to 2.27%. 

  

Table 2. Comparison of the approximate frequencies with the exact frequency, n=5 
 

A 
e  HEBM  R. error 

(%) 
present  R. error 

(%) 
0.1 1.039700 1.038188 0.145427 1.039591 0.010484 
0.5 2.524694 2.538865 0.561296 2.543374 0.739892 
1 8.010045 8.156797 1.832100 8.124038 1.423126 
5 187.199101 191.414036 2.251579 190.068409 1.532757 
10 747.323025 764.234475 2.262937 758.782578 1.533414 
100 74683.90825 76376.73294 2.266653 75929.24898 1.667482 

 
The exact frequency of the oscillator given by Eq. (24) is [8]: 
 

 

1

/ 2
1/ 22 4

2 3

0

2 1 sin sin
e

k

k t k t dt









 
                                                                                                 (27) 

where: 

2 4
3 5

1 1
2 3

A A
k

 
                                                                                                                              (28) 

2 4
3 5

2 2 4
3 5

3 2

6 3 2

A A
k

A A

 

 




 
                                                                                                                         (29) 

4
5

3 2 4
3 5

2

6 3 2

A
k

A A



 


 
                                                                                                                         (30) 

Comparions of trend the relative error of this case between two methods are illustrated in Figs. 5 – 7  for a 
range of initial amplitudes A,  parameters α3 and α5, respectively. Again, the accuracy of the present solution 
can be seen for strong nonlinearities.  
 

Comparisons of the responses of the present solution and the HEBM solution are given in Fig. 8.  
 

 
 

Fig. 5. Comparison of the relative errors of approximate frequencies obtained by two methods for n=5, 
α3=10, α5=10. 
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Fig. 6. Comparison of the relative errors of approximate frequencies obtained by two methods for n=5, 
α5=5, A=5. 

 

 
Fig. 7. Comparison of the relative errors of  approximate frequencies obtained by two methods for 

n=5, α3=10, A=1. 
 

 
 

Fig. 8. Comparison of the HEBM and present solutions with the exact solution for n=5, A=5, α3=10, 
α5=100. 
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3.3 Example 3,  for n=7 
 

In this case, the Duffing oscillator has the following form: 
 

3 5 7
3 5 7 0X X X X X                                                                                                                   (31) 

The approximate frequency for this case obtained by the present method is derived from Eq. (7), as follows: 
 

2 4 6
3 5 71 0.72 0.575 0.436present A A A                                                                                     (32) 

 

Using the HEBM, the approximate frequency can achieve [4]: 

2 4 6
3 5 7

3 7 15
1

4 12 32
HEBM A A A                                                                                                     (33) 

Comparison of the approximate frequencies obtained by the two methods are illustrated in Table 3 for α3=10 
and α5=100. It can be seen from Table 3 that the maximum relative error of the present frequency is only 
0.9% while the maximum relative error of the HEBM freqency reaches to 1.6%.  
 

Table 3. Comparison of the approximate frequencies with the exact frequency, n=7 
 

3  5  7  A 
e  HEBM  R. Error 

(%) 
present  R. Error (%) 

1 1 1 0.1 1.003773 1.003772 0.00012 1.003622 0.015020 
5 5 5 0.1 1.018704 1.018721 0.001698 1.017983 0.070721 
5 5 5 0.5 1.463311 1.468473 0.352741 1.455152 0.557625 
10 10 10 0.5 1.806022 1.820117 0.780467 1.798592 0.411399 
10 10 10 1 4.305981 4.361288 1.284413 4.334240 0.656274 
50 50 50 1 9.399149 9.544850 1.550147 9.483048 0.892619 

 

Comparisons of the response of the present solution and the HEBM solution are showed in Fig. 9.  
 

For this oscillator given in Eq. (31), the exact frequency as follows [4]: 

 

1

/ 2

2 2 2 4 4 2 4 6 60
3 5 7

2 4
1 1 1

1 (1 sin ) (1 sin sin ) (1 sin sin sin )
2 3 4

e

d

A A A

 
 

        


 
 
 
 

         
 

 (34) 

 

 
 

Fig. 9. Comparison of the HEBM and present solutions with the exact solution for n=7, A=1, α3=10, 
α5=10, α7=10 . 
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3.4 Example 4, for the higher value of n  
 
3.4.1 For n=9 

 
The approximate frequency for this case obtained by the present method is derived from Eq. (7), as follows: 
 

2 4 6 8
3 5 7 91 0.72 0.575 0.436 0.4198present A A A A                                                         (35) 

 
The approximate HEBM frequency [4]: 
 

2 4 6 8
3 5 7 9

3 7 15 31
1

4 12 32 80
HEBM A A A A                                                                           (36) 

 

3.4.2 For n=11 
 
The approximate frequency for this case obtained by the present method is derived from Eq. (8), as follows: 
 

2 4 6 8 10
3 5 7 9 111 0.72 0.575 0.436 0.4198 0.3722present A A A A A                                    (37) 

The approximate HEBM frequency [4]: 
 

2 4 6 8 10
3 5 7 9 11

3 7 15 31 63
1

4 12 32 80 192
HEBM A A A A A                                                         (38) 

For n=13,15,… ,the approximate frequency can be get by the same manner. 
 
Comparison of the solutions achived by two methods with the numerical solutions are illustrated in Figs. 10-
12 for n=9, n=11 and n=13, respectively. It can be seen that there is a great agreement between the analytical 
solutions and the exact solutions as well as the numerical solutions. 
 

    
 

Fig. 10. Comparison of the HEBM and present solutions with the exact solution  
for n=9, A=0.5, α3=10, α5=10, α7=10, α9=5. 
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Fig. 11. Comparison of the HEBM and present solutions with the exact solution  

for n=11, A=0.5, α3=10, α5=10, α7=10, α9=5, α11=10. 
 

     
 

Fig. 12. Comparison of the HEBM and present solutions with the exact solution  
for n=13, A=0.1, α3=10, α5=10, α7=10, α9=5, α11=10, α13=20. 

 

4 Conclusion 
 
Analytical approximation solutions of the generalized Duffing oscillator is investigated by the Equivalent 
Linearization method with a weighted averaging. The method is developed based on the convenience of the 
classical Equivalent Linearization method and the accuracy of the weighted averaging value. A new 
approximate solution for the generalized Duffing is given in this work. The relationship between the 
frequency and the initial amplitude is given in a closed form. The approximate solutions are the harmonic 
oscillations, which are compared with the previous analytical solutions, the exact solutions and the 
numerical solutions. Comparisons show the accuracy of the present solutions.  

The solution procedure shows that this method is very simple and it can be further developed for many 
strongly nonlinear systems in engineering and multi-degree of fredom vibrations. 
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