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Abstract

The majority of the Optimal design research has focused on linear models and binary data
models. However, a couple of researches have recently called attention to Poisson regression
models with random effects. In the present paper, we theoretically and numerically discuss
the optimal designs for multiple Poisson regression model with random coefficients and two
explanatory variables. Since there is no closed form for the information matrix, the quasi-
information approach is applied in order to find the optimal designs in this study. Some special
cases are illustrated and a new version of equivalence theorem is obtained.
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1 Introduction

The main goal of the optimal design is to obtain the best experimental setting x; which maximizes
the information matrix of parameters. Optimal experimental designs for generalized linear models
have received increasing attention in recent years. The majority of investigations into optimal
designs for generalized linear models (GLMs) have been dedicated to binary data models. Abdelbasit
and Plackett [1], Minkin [2] and many others have studied the optimal designs for logistic models.
Poisson regression model is an appropriate model to explain count data. Minkin [3] and Yanping et
al. [4] have also conducted extensive research on the optimal designs for Poisson regression models.

In the above studies, they considered Poisson regression model for fixed effects, a fact may be in
challange if we cannot suppose that the same effect for different individuals. In this study, we
consider the multiple Poisson random coefficients regression model. This model is a special case of
generalized linear mixed models (GLMMs)[5].

Information matrix plays a key role in optimal design theory. Apparently, this role originates
from the asymptotic relation between information matrix and variance-covariance matrix of the
maximum likelihood estimator of parameters. Due to the random effects of GLMMSs, the likelihood
function and consequently the information matrix cannot be obtained in an explicit form. We apply
a quasi-likelihood approach which was extensively studied by McCulagh [6].

Niaparast [7] derived optimal designs for the quasi-likelihood estimation in a Poisson random
intercept regression model. Furthermore, Niaparast and Schwabe [8] extended the results to general
mixed effects Poisson regression.

The information matrix for GLMMs depends on the unknown parameters. Therefore, it poses a
two-fold problem: first we must know the parameters to find the optimal designs, and second, we
need to designs first in order to estimate the parameters. A simple approach to this problem is to
look for locally optimal designs which are based on an initial guess of the parameters. Then, we
can achieve the optimal designs which are optimal with respect to the initial guess.

The present paper is organized as follow. In section 2 we mention the results which have been
obtained by Niaparast [7] and Niaparast and Schwabe [8]. The optimal designs for some special
cases of general mixed effects Poisson are discussed in sections 3 and 4. Moreover, all proofs are
presented in appendix following the discussion.

2 The Structure of Model and Design Specification

The results of this paper are in continuation of Niaparast [7] and Niaparast and Schwabe [8],
who obtained some new results on D-optimal designs for Poisson regression models with random
coefficients. Since we need their notation and results, we review them here.

Consider a Poisson regression model with random coefficients as following

i=1,---,n

ind -
Yi;i|bi ~ Poisson(\;) 7{ ji=1-m

(2.1)

where Y;; is the jth replication for the individual ¢ at the experimental setting x;; from the
experimental region X', and the mean of the response A;; = A(xX;, b;) is linked to the linear predictors
by the following equation

log(Aij) = £ (xi;)bs

We also assume that £ = (fo, f1, -+, fp—1) is the known regression function and b; is a p x 1 vector
of random effects which is normally distributed with mean vector 3 = (Bo,- - , Bp—1) and known
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variance-covariance matrix 3. Moreover, we suppose cov(b;,b;) = 0 for i # j.
Let Y; = (Yi1,- -+, Yim, ) be the vector of all m; observations for individual ¢, regarding the definition
of model (2.1), the global mean and the variance-covariance matrix of Y; can be obtained as

E(Y:) = (u(xij), -+ 5 i(Xim,)) With p(xi;) = exp(f7 (xi5)8 + %U(Xz‘jaxz‘j))

cov(Y;) = A; + A;C;A;

where A; = diag{u(xi;)}j=1,-- ,m,; is a diagonal matrix with entries u(x;;) for j = 1,--- ,m; and
Ci = (c(Xij, X)) j k=1, ,m; - Here c(xij, Xi1.) = exp(o(Xij, Xix))—1 and o(xij, xir.) = F(xi;)Zf (Xir)
are the variance correction and the dispersion function term, respectively.

Let £ = { );1’ o ’;S be the design through which we observe all individuals under that. In
1, Ps

other words, we omitted index ¢ of the individual designs, and hence, m; = m fori =1,--- ,n. Here

pj = %’ (j =1,---,s) stands for the proportion of observations taken at x;. Niaparast and Schwabe

(2013) have obtained the quasi-information matrix for the vector of fixed effects parameters, 3 in
Poisson regression model with random effects as follow,

M(E) = F{ (A" + Ce) ' Fe (2.2)

where Fe = (f(x1),--- ,f(xs))T, A¢ = diag(n;pu(x;))j=1,....s and Ce¢ = (c(X;,Xk))j k=1, s-
Finally, the following theorem is essential to evaluate D-optimal designs for Poisson regression model
with random coefficients.

Theorem 2.1. An individual design & is locally D-optimal at B for the quasi-information in the
mized effects Poisson regression model, if and only if

d(x, &) <p—tr(ME)"Fer(Ag + Cer) ' Ce (Ag! + Cg) " 'Fer)
for all x € X. Moreover, equality holds for all support points of £*.

Here d(x,£) = mu(x)(f(x) — F{ (A" + Ce) leex) " M(E) T (F(x) — FE (A7 4 Ce) lee ) is the
sensitivity function (in x) of the design £ and c¢ x = (¢(x;,x%));=1,...,s iS a vector of joint correction
terms for the settings x1,...,xs of a design £ for prediction of a further setting x.

The proof can be found in Niaparast and Schwabe(2013).

3 D-optimal Designs for Multiple Poisson Regression
Model with Random Intercept

We consider two cases of the multiple Poisson regression models with random intercept

NYilbe ™ P(N) iX; = A(xj,bo) = exp(bo + Brzr, + Baa;) (3.1)
i)Y;lbo % P(N) 5N A(xj,bo) = exp(bo + Biw1j + Bawaj + Bazijra;)  (3.2)

where bp is assumed to be normally distributed with the mean B9 and known variance o . The
first model is a special case of model (2.1) with 8 = (Bo, f1,52), Fr(x;) = (1,21, 2;) and
3 = diag(a2,0, 0) and the mean function, dispersion function and correction term will be p; =
exp(f(x;)B + 207), (0(x5,%k))j k=123 = 0> and (c(x;,Xx))jk=1,2,3 = exp(c”) — 1 respectively.
The second model is also a special case of model (2.1) with B8 = (Bo, 81,52, 83), f'(x;) =
(1,215, T2, 1;22;) and T = diag(c?,0,0,0). The mean function, dispersion function and correction
term will be p; = exp(f’(x;)8 + 10°), (0(xj,%k))jk=1,...a = o> and (c(X;,Xk))j k=1
exp(o?) — 1, respectively.

.....
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Suppose that qi; = exp(B121;) , g2; = exp(B22;) and po = exp(Bo + 50°) the mean of Y; will be
as [tj = qijq2jMo0- In practice, most applications of this model, like bioscience, pharmacokinetics
etc., the design region is the non-negative real line or a subset of that. We also assume that the
relation between response mean and regressor variables is negative, i.e. p; is a decreasing function
of q1; and ¢2;. Therefore, canonical standardized mean fi; = g1;g2; will be in (0,1]. So the design
region can be limited to 0 < ¢1; <1land 0 <qgo; < 1.

Theorem 3.1. Consider the model (3.1). In terms of the canonical standardized mean, let £ =

{ (Q11,Q21) (Q12,QQ2) (Q13,£J23)
p1 P2 3

design to estimate 3 depends on the parameters only through v(m, Bo,0>) = mefotze? (6‘72 —1) as

follow

} be the design minimal supported points, the local D-optimal

t F* 2
det (IM(€)) o p1P2p3Q;1Q21Q12Q22Q13Q23(de (F™))
(1 +~(m, Bo,02)(p1g11g21 + P2q12q22 + P3¢13G23))
1 1 1
where ps = (1 —p1 —p2) ,F* = [ In(q1) In(qi2) In(qz) | and qij = exp(Biz1y), q25 =

ln(qgl) ln(q22) l’n(Q23)
exp(Bax2;) for (1 =1,2,3) .

According to Theorem (3.1), numerical methods can be used to minimize —log(det(9M(§))) in order
to find D-optimal designs. The D-optimal design for some representative values of v(m, 8o, o>) have
been listed in Table 1.

Table 1. Locally D-optimal design for model (3.1)

y(m, Bo, o?) D1 D2 q11 g21 12 qo2 q13 q23
0 0.3333 0.3333 1 0.1353 1 1 0.1353 1
0.5 0.3400 0.3200 1 0.1303 1 1 0.1303 1
2 0.3500 0.3000 1 0.1222 1 1 0.1222 1
5 0.3799 0.2399 1 0.1133 1 1 0.1133 1
10 0.3954 0.2079 1 0.1061 1 1 0.1061 1
50 0.4131 0.1744 1 0.0961 1 1 0.0961 1
100 0.4150 0.1700 1 0.0947 1 1 0.0947 1
1000 0.4183 0.1633 1 0.0939 1 1 0.0939 1

Regarding Theorem (2.1) we have evaluated sensitivity function, over the experimental region for
the Model (3.1), and the results in Table 1 have been confirmed. We have drawn sensitivity function
with respect to gi; and ¢2;, for two special values of v(m, B, 0?) in Fig. 1.

Theorem 3.2. Consider the model (3.2). In terms of the canonical standardized mean, let
¢ = (q11,621) (q12,922) (q13,923) (qu4,Q24)
p1 P2 p3 pa
the local D-optimal design to estimate 3 depends on the parameters only through ~y(m, ,80,02) =
mePotze” (662 —1) and z =

} be the design with minimal support points,

B3
N follow

T 25 [Ty a1iqes exp(2(35, In(g1;)in(gz;))) (det(F))?
(14 v(m, Bo, 02) (X1 Pia1;a2; exp(2In(q1;)In(gs;))))

det(9M(£)) (3-3)



Naderi et al;

ARJOM, 9(1): 1-11,

2018; Article no. ARJOM. 40150

i
:
i
!

%, &)

{a) y=100

a6, &)y

i
i

| “““l‘li" I
:1“\un\||ﬁii'\‘diiﬁi‘qma‘..

it

I

il

“““II"“\
i
L

i
Sl

4z

{byy=1000

Fig. 1. Sensitivity function d(x;&") over the unrestricted design region for model (3.1)

where ps = (1 — p1 —p2 — p3) ,

1

In(qi1)

In(ga1)
ln(qu)ln q21

exp(Baw2;) for (j =1,

F* =

) In(q12)In(g22)
2,3,4) .

1
In(q13)
In(gz3)

In(qi3)in(ges)

1
In(qia)
In(qo4)

In(qi4)In(gas)

and ¢q1; = exp(B121;), q2j =

Numerical methods lead us to obtain the locally D-optimal design for some representative values

~(m, Bo,0?) and z which are listed in Table 2.

Table 2. D-optimal design for the model (3.2)

s=-
y(m, Bo, o?) p1 D2 D3 qi1 21 Q12 Q22 qi3 Q23 qia q24

0 0.250 0.250 0.250 0.135 1 1 0.135 1 1 0.216 0.216

0.5 0.259 0.259 0.230 0.130 1 1 0.130 1 1 0.215 0.215

2 0.260  0.260 0.209 0.128 1 1 0.128 1 1 0.214 0.214

5 0.264 0.264 0.200 0.127 1 1 0.127 1 1 0.213 0.213

10 0.270 0.270 0.197 0.126 1 1 0.126 1 1 0.213 0.213

50 0.280 0.280 0.150 0.118 1 1 0.118 1 1 0.212 0.212

100 0.283 0.283 0.145 0.104 1 1 0.104 1 1 0.209 0.209
1000 0.290 0.290 0.137 0.100 1 1 0.100 1 1 0.206 0.206

Using Theorem (2.1), the results which have been obtained in Table 2, have been confirmed and
shown in Fig. 2 for two different values of v(m, o, 0?).
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Fig. 2. Sensitivity function d(x;¢") over the design space for the Model (3.2)

4 D-optimal Designs for Multiple Poisson Regression
Model with Random Slopes

We consider two cases of the multiple Poisson regression model with random slopes as following
i) Yib " P() 3 A = M, b) = exp(fo + b + faa;) (4.1)

The above model is a special case of model (2.1) that b is assumed to be normally distributed
with the mean 1 and known variance o? and vector of fixed effect parameters 8 = (S0, 81, f2),
variance-covariance matrix 3 = diag(0,0%,0) and fT(x;) = (1,1, 22;).

The dispersion function, mean function and correction term could be indicated as (o (x;, X)) ,k=1,2,3 =
olrizik , py = exp(Bo + By + Paxa; + 30°27;) and (c(x;,Xk))jk=12,3 = exp(o’zizix) — 1,
respectively.

w) Yt EPOyG) A = A%y, b, b)) = exp(Bo + bxyy + baay) (4.2)

This model is also a special case of general model (2.1) that b and b’ are assumed to be normally
distributed with the mean 3; andB2 respectively. We also suppose that b and b’ have the same
known variance o?. Based on model (2.1), we have 8 = (Bo, 1, 52), T = diag(0,0%,0%) and
FT(x) = (L, z1j,225). Here (0(xj,X))jh=1,23 = 0°(T1jT1k + T25x21), pj = exp(Bo + frar; +
Baxa; + 507 (27, + x3;) and (c(xj,%Xk))j.k=1,2,3 = exp(0”(@1;@1k + T2;T2k)) — 1 stand for dispersion
function, mean function and correction term respectively.

We suppose that the design regions are also a non-negative subset of real numbers.

Considering 1o = exp(Bo) using the same notation in the previous section, the mean functions,

In : In :
jj, can be represented as ;= qi;q2; exp(30? (Y1) ug and pj = quyq2; exp(S0?((MHE2)? 4

(M) )po for model (4.1) and model (4.2), respectively.

Theorem 4.1. Consider model (4.1) and Model(4.2). Based on the canonical standardized mean,

let&:{ (q11,621)  (q12,22) (@13, 23)

} be the design with minimal support points, and determinant
p1 b2 p3
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of quasi-information matriz will be as follow

m® p1paps i propis (det (F*))?
det(IM(£)) o (14 f(eijy s, m, pg))

where
1 1 1
F* = | In(qu1) In(qi2) In(qis) | with qij = exp(Biz1;) and qz; = exp(B2x2;)for(j =
In(ga1) In(ga2) In(ges)
1,2,3). Also
f(cijypism, ;) = mpiciifin + mpacaojis + mpscazs — M p1paciafia iz

2 2 2 2 2 2
m pip3Cizip3s — M pap3Caz i 43 +m pP1p2C11Ca2 1 U2 +m P1p2C11C33 U1 U3
+  mPpapscaacsspiaps — m>pipapscii oz papts — M p1papscizcapu fiaps
—  mPpipapsciacasp piapis + 2m>pipapsciacizcas i paps

+ 2m3p1p2p3011 C22C33 41 [42 43

is a known function. Here c;; is the (i,j)th element matriz C¢ which is defined as

2 2 2 2
e? *11 — ] e? T11T21 _ ] 0 %11%31 _ ]
— 02z11121 0212 02121z31 d
Ce=| e -1 e’ P21 — 1 e -1 an
2 2 2 2
e T3ITIL _ 1 0 T31%21 _ ] e? T31 1
o2(x?, +23) o (2117124721 722) o2 (z11713+721723)
e nTr) 1 e -1 e -1
Ce = 602(111x12+x21m22) 1 602(90§2+w§2) 1 602(9012113+$229623) -1
2 2 2, 2 2
e (@zmiitTa3wiz) _ | oo (w13maztwaswan) _ | e (@i3+w33) _

for different models (4.1) and (4.2), respectively .

Using the above theorem, numerical methods can be used to minimize —log(det(9M(§))) in order
to find D-optimal design for models (4.1) and (4.2), respectively. The locally D-optimal designs
for some representative values of (B, 81, B2 and m are listed in Tables 3 and 4 for models (4.1) and
(4.2), respectively. The results have been evaluated by theorem (2.1).

Table 3. D-optimal design for model (4.1)

m = 200 60:—2 ﬂ1:—5 ,32:—5
o P1 P2 q11 q21 q12 q22 q13 q23
0 0.3333 0.3333 0.1353 1 1 0.1353 1 1
0.5 0.3226 0.3385 0.1300 1 1 0.1353 1 1
1 0.2930 0.3532 0.1170 1 1 0.1353 1 1
1.5 0.2655 0.3767 0.1168 1 1 0.1353 1 1
2 0.2059 0.3967 0.1367 1 1 0.1353 1 1
2.5 0.1867 0.4066 0.1938 1 1 0.1353 1 1
3 0.1735 0.4151 0.2528 1 1 0.1353 1 1
4 0.1411 0.4295 0.3435 1 1 0.1353 1 1
5 0.1271 0.4541 0.4244 1 1 0.1353 1 1
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Fig. 3. Sensitivity function d(x;£*) over the design space for model (4.1)

Table 4. D-optimal design for model (4.2)

m = 200 ﬂ0:—2 51:—5 ﬂ2:—5
9 P1 P2 qi1 q21 q12 q22 q13 Q23
0 0.3333 0.3333 0.1353 1 1 0.1353 1 1
0.5 0.3277 0.3277 0.1299 1 1 0.1299 1 1
1 0.3104 0.3104 0.1170 1 1 0.1170 1 1
1.5 0.2655 0.2655 0.1168 1 1 0.1168 1 1
2 0.2462 0.2462 0.1474 1 1 0.1474 1 1
2.5 0.2219 0.2219 0.2024 1 1 0.2024 1 1
3 0.2056 0.2056 0.2528 1 1 0.2528 1 1
4 0.1872 0.1872 0.3668 1 1 0.3668 1 1
5 0.1765 0.1765 0.4501 1 1 0.4501 1 1

2] o=1 (b} o=2

Fig. 4. Sensitivity function d(x;¢") over the design space for model (4.2)
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Figs. 3 and 4 have been drawn for two cases in each model.

5 Conclusions

This paper aims at providing an extension and an application for the results in Niaparast and
Schwabe (2013). We obtain some new theoretical results to find D-optimal designs for the quasi-
likelihood estimators of parameters. The numerical results indicated the impact of the random
coefficients on the D-optimal designs for some particular cases of multiple Poisson random coefficient
regression model. Also the obtained results indicate that the D-optimal designs for different values
of parameters are completely different from the standard experimental designs with the same
proportion of design points.

For Poisson regression model, the explicit form for Information matrix cannot be obtained, hence,
we applied a qusie-likelihood approach.

The point, which has not been considered here, is the efficiency of the D-optimal designs for
quasi-likelihood estimation of the fixed effects parameters versus D-optimal designs for likelihood
estimation of the same parameters.

A Bayesian approach could be applied as an alternative method for locally D-optimal designs.
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Appendix

Proof of Theorem (3.1)

Regarding the Equation (2.2), for the design £ = { ((I11p7q21) (q12p7 422) (ql‘;’ 423) } the quasi-
1 2 3
information matrix for 3 is given as follow

ME) = Fe(A' +Co) Fe (5.1)
111 nin 0 0 . 1
where F{ = [ z11 212 213 |, Ae = 0 na 2 0 andCe=(e” —-1)(1 1 1) 1
T21 T2 T23 0 0 N33 1
For model (3.1) , we have:
o = eﬁ(ﬂr%dz Q= PEIESY G2 = eP2r2;

then we can represent p; as follow

1
pj = exp(Bo + B1w1; + Bawo; + 502) = q1592; 1o

If we combine these expressions and replace in (5.1), after using some matrix algebra and a
straightforward calculation the result follows.

Proof of Theorem (3.2)

(@11,921)  (q12,922) (q13,923) (qu4,qea)
D1 D2 D3 D4
(4.2), the design matrix, the diagonal matrix of the expectations and the matrix of the correction

terms are:

We consider the four points design £ = } For model

1 1 1 1 N1 0 0 0
r11 T12 T13 T14 0 na 2 0
¢ To1 T22 23 T24 e 0 0 N33 0 and &¢
T11T21 T12T22  T13T23 T14T24 0 0 0 T4 fba

1

1 . .

(6‘72 -1) ( 1 1 1 1 ) 1 respectively. The mean function p; can be represented as

1

1
wi = exp(Bo + Prx1; + Bax2; + Psw1jTe; + 502) = q15-G2;- exp(z.In(q1;).1n(g2;)) 1o

1.2 . . . .
where g = 701277 g1 = P17 | go; = €272 and z = 6[13?32‘ By replacing these expressions in the

quasi-information matrix, relation (5.1), and after using some matrix algebra and a straightforward
calculation the result follows.

Proof of Theorem (4.1)
Let m; = mp; . From Equation (2.2), for the design £ = { (@, 021)  (@12,22)  (a13, 28) }, the

D1 D2 %3
quasi-information matrix is given as follow

ME) = F A +Ce) 'F(€) (5.2)
1 1 1 nip1 O 0
with FT(§) = 11 Ti12 T13 and A = 0 napi2 0 . Here p; = exp(Bo +
T21 X222 X23 0 0 n3u3

Brzj + Bawa; + 50°315) = quiq2; exp(%oQ(%)Qmo for (j =1,2,3) and p; = exp(Bo + Brz1; +

10
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Bazo; + 507 (23 + 25;) = q1;q2; exp(%o‘z(%)2 + %)2);10 for (j = 1,2,3) stand for Model

(4.1) and Model (4.2) respectively, where po = €0, qi; = €11 and q2; = €°2%% for (j =

6021%1 -1 602111Z12 -1 602111113 —1
1,2,3). Also C¢ can be represented as C¢ = ef’Tum2 | ol 1 gofenmis 1 | oand
eazxmxn -1 602x13$12 -1 6024‘%3 —1
602(9”?1“'221)2 -1 602(2111124-121122) -1 602(111113-4-1"21123) -1
Ce = | o nenteones) _ e (atatady) _ e (@12e13+w22223) _ 1 | for models (4.1)
602(113111+123113) -1 602($13123+123122) -1 602(1?3+Z§3) -1

and (4.2), respectively. The result will be obtained after replacing the items in quasi-information
(5.2) with the above corresponding expressions and a straightforward calculation.
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